531.50

Soit a, b deux réels tels que 0 < a < 1 < b, et f de classe \mathcal{C}^1 sur [a, b].

(a) Montrer que la suite de terme général
$$\int_a^b \frac{f(x)}{1+x^n} dx$$
 converge vers

$$\int_{a}^{1} f(x) dx.$$
(b) Montrer que:

(b) Montrer que :
$$\int_{a}^{1} \frac{f(x)x^{n}}{1+x^{n}} dx \sim \frac{1}{n} f(1) \ln(2)$$

a) Sut
$$\frac{1}{1} : x + x + \frac{1}{1 + x^{n}}$$

Antro $4x \in L_{0,1}L$, $\frac{1}{1 + x^{n}} = \frac{1}{1 + x^{n}}$

For $n = 1$ $\frac{1}{1 + x^{n}} = \frac{1}{1 + x^{n}}$

Done $\frac{1}{1} (x)$ convery simplement vers $\frac{1}{1} (x - x)$
 $\frac{1}{1} (x)$ or $x \in L_{0,1}L$
 $\frac{1}{1} (x)$
 $\frac{1}{$

Soit for x +> (x f'(x) + f(x)) lo (1+x")

Yxe In, 12, In(1+xn)-> 0

One for convery complement vers o.

Daniners!

1(2)(x)+j(x)) ln(1+xn) = 12 j(x)+j(x) ln(2)

indépendent de re et intéguable con cpm sur [1,13]

Donc of (suff(x) + f(x)) la(1+x) dx -> 0

Duc 1 ((x) (x)+f(x)) la(1+x) de = 0 (1)

nemen, a fa la (1+an) - 0(1)

Done Sa fenson de no fensolas