Existence d'une racine carrie symétrique positive d'une matrice

synthique positive

· SE St (IR) due par le Kreisier spechal et la caractinsatsin spechale de la positivé:

$$\exists P \in O_m(IR), \lambda_1 \dots \lambda_n \in IR_+$$
 $\exists S = P \begin{pmatrix} \lambda_1 & (o) \\ (o) & \lambda_n \end{pmatrix} P^T$

. On note
$$R = P \begin{pmatrix} \sqrt{\lambda_1} & (0) \\ (0) & \sqrt{\lambda_2} \end{pmatrix} P^T$$

• Ohn a R symithingue (car $R^T = R$)

positive (car ses v. p R_1 ... N_m sont positives)

ty $R^2 = S$ (c'est ue calcul direct)

Ans R conside.

Unicité de la racine comie symétrique positive d'une matrice symétrique positive (version matricelle)

Soil LEIR_. [X] polynôme d'interpolation de Lagrange top

Vi L(X;) = Ti

Remarque: si le up ne sont pas distinctes, il n'y a que a co-dihas disterpolation et LE (Res IX)

On calcele:
$$L(S) = L(PDPT)$$
 justif classique,
= $P(L(D)PT)$ polynom de nature
= $P(L(M)(O))$ pT de justif classique
= $P(L(M)(O))$ pT PT
= $P(M)(M)(O)$ pT

Notons Tem metrice convenal: $T \in S_n^+(IR)$ et $T^2 = S$ Comme $T^2 = S$, T comme te avec S, due avec L(S) = Rdonc T commete avec R.

Mans Tet R soul diagnalisables par le the spechal, donc par exercise classique (qu'il faut convaite!)
elles soul ca diagonalisables:

Il existe $Q \in GL_n(IR)$ et D_n, D_2 diagonales à coeffs $\geqslant 0$ tq: $T = QD_1Q^{-1}$ et $R = QD_2Q^{-1}$ Mais comme $T = R^2$, on a $D_n = D_2^2$.

Par positient de coeffdiagnanx, D, =D2 et donc T=R

synthique positive (version vectorable)

Supposes S=R² où S, R E Sm (R)

Notins s EX(IR") conorignement amouré à S : se Sf(IR")

 $r \in \mathcal{C}(\mathbb{R}^n)$ cononiquent anocié à R : $r \in S^+(\mathbb{R}^n)$

· Par le He spectral, Rh = (1) Ex(s)

Or $NOS = L^3 = SON$ donc le $E_N(s)$ sont stolles par n.

La conneimente de n est la convaissance de endonomprimis induits n for n son $E_N(s)$

• A) est autoadjoint positif, on a l'est, donc par le the spectral, il existe $B_{-}(e_{1},...,e_{p})$ base oithernouse d_{1} $E_{1}(1)$, et f_{2} $E_{3}(1)$, e_{1} $E_{4}(1)$, e_{2} e_{3} e_{4} e_{5} e_{6} e_{7} , e_{7} e_{7} e_{8} e_{8

On a alon: lez = s(ez)

= 2 (4)

= m2 ez

donc $\lambda = \mu_2^2$ et donc $\mu_2 = + \sqrt{\lambda}$ par paritiation $\lambda = \lambda = \sqrt{\lambda}$ Id $E_{\lambda}(\lambda)$

On a donc montré l'enricité de chaque 22, donc de 2, donc h.