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Dérivation, intégration des fonctions vectorielles de
variahle réelle

Tous les espaces vectoriels normés envisagés dans ce chapitre sont de dimension finie.
On s’intéresse dans ce chapitre a des fonctions :

leeﬂj) F
t o—  f(t

ol I est un intervalle de R et F' un espace normé de dimension finie sur K = R ou C.
Remarque. Pour les fonctions a valeurs vectorielles, il n’y a pas de théoréme de Rolle, pas de quotient etc.

Remarque. Dans le cadre de notre programme, on ne dérive que les fonctions de variable réelle, et pas les fonctions de

variable complexe.



1  Dérivation des fonctions a valeurs vectorielles

1.1 Dérivabilité et dérivée des fonctions a valeurs vectorielles

Définition. Soit a € I. On dit que f est dérivable en a lorsque la fonction :
A. 1
3 (fa+h) ~ f(a)

admet une limite en 0. On note alors f’(a) cette limite.

Remarque. f/(a) est un élément de F', un vecteur.
Remarque

Proposition. f est dérivable en a si et seulement s’il existe ¢ € F tel que, au voisinage de h — 0 :

fla+h) = f(a)+ hl+o(h)

- 5. — —
:f(a.;l«') = g(o\ + A A~ 7(8)

o olh) = AEC) o= ) o
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1.2

Définition. f est dérivable sur I si elle est dérivable en tout point de I. Dans ce cas, on définit la fonction
dérivée :
ff:I - F
t o= f(t)
On dit que f est C! lorsque f est dérivable, et que f’ est continue.

Remarque. On peut définir, lorsqu’elles existent, les dérivées a gauche et a droite en a.

Interprétation cinématique

En cinématique, on étudie le mouvement d’un point mobile :
t— M(t)

ou la variable t désigne le temps. Fixant une origine a I’espace affine, cela revient a étudier la fonction a valeurs
vectorielles :

fit—OM(t

On écrit alors, en général, M'(t) pour f'(t) ou encore @2, quantité qui ne dépend pas du choix de l'origine
de Vespace affine, et qui représente le vecteur vitesse a l'instant t.

3




1.3 Opérations sur les dérivées

1.3.1 Combinaison linéaire

Proposition. Soit f, g deux fonctions I C R — F, A\, u € K. Si f et g sont dérivables en a € E, alors Af + ug
est dérivable en a et :

(Af +1g)'(a) = Mf'(a) + pug'(a)

Proposition. Soit f, g deux fonctions I C R — F, \,u € K. Si f et g sont C' sur I, alors A\f + pug est C' sur I./



A e—>

1.3.2 Image par une application linéaire

Proposition. Soit E un espace normé de dimension finie, u € L(F,G), et f : I C R — F une fonction dérivable

enacl.
Alors uo f : t— u(f(t)) est dérivable en a et :

(wo f)'(a) = u(f'(a))

Remarque. Ici, f n’est pas une fonction de la variable réelle, donc on n’applique pas la formule usuelle. Ca n’a pas de

sens de parler de la « dérivée de u ».

Ter . ¢ = ¢

et

\Y;
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(o)) (F) =~ wof (1)
Prows, Rt vomnae se b —0
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Proposition. Avec les notations précédentes, si f est de classe C! sur I, alors u o f I'est aussi.

Exemple. Soit A: [CR — M,(K) une application dérivable sur I. Montrer que t + tr (A(t)) est
t o~ A(t)
dérivable sur I, et exprimer sa dérivée a ’aide de A’.

fo R —, M (e) ke M (1K) —s K
Eir— A > Ac(AD)

CM e Mrﬂ‘w‘ou—u_, troa 2 Aeacelre o

(e oh) (M) 2 AL RU(H)

%: A'(.(’): (a,;j((:) )

.L‘/a'
A (REY) = Z a; (t)
M doowbe A S ol H = b (A(R)

Exemple. Soit z: ICR — FE une application dérivable sur I. Pour a € E, montrer que I'application
t —  x(t)
t — (a,x(t)) est dérivable sur I est exprimer sa dérivée a 'aide de z’.

n - I —_— E- A E —_— 2 (Q
Li— a(r) ta)_ap <La,q>

Aty Dresieni eh o dbaiedt Aone.  agom 4 cleesll

e (aw)’m: o' () Yr

Ac gy_ Lo, n("\> = <o, %x({—\)



1.3.3 Bilinéarité, dérivée d’un produit

Proposition. Soit F, F, G trois espace normés de dimensions finies, I un intervalle de R. Si B : ExXx F — G
est bilinéaire, f : I — E et g : I — F sont dérivables en a, alors :

B(f,g): I — G
t = B(f(t),9(t)

est dérivable en a et :
(B(£.9)) (a) = B(f'(a), g(a)) + B(f(a),d'(a))

Proposition. Avec les mémes notations, si f et g sont C* sur I, alors B(f, g) I'est aussi.

B§ ) (k) = B ( J(e), gCFe) )
—@ ({B)eb N+ 2E®, e hg'(Hr RS @)

o £, l) o &) —oO
o b e?
@(g(f‘),jCH)
@Lﬁtﬁ,g e r),g(ﬂq
AZG(C{'U) 4] + A B(E (L), 3(?)) +h B ({H &4
H A 8(E gln) + &5 B(§A %)
QA" B8, St)
o8 7
Wc(w blg o) 9H) — O
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A Cseo ({ ‘V'krb [ Blxg) Nl & C lorli g\

dow  [6(E @) gH) ) € C N NgtH
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Exemple. Soit t — A(t) et t — B(t) deux applications C' sur I intervalle, & valeurs dans M, (K) et M, (K)
respectivement. Montrer que ¢ — A(t) B(t) est C! sur I, et donner I’expression de sa dérivée.

(MN) —= TN 2 brbeacens donc

%(MHIL(HJ = A(ABC) + AL (F)

Exemple. Soit ¢ — A(t) une application C! sur T intervalle, a valeurs dans M,,(K). Montrer que t (A(t))2
est C! sur I, et donner I’expression de sa dérivée.

B U, (W) wor comndet -
j’-_ Er—s AUA<AW = AT(F)
le quedil b bilivins doc
f(Fr= A (DAY + AW AG)

Exemple. Soit F un espace euclidien, t — f(t) et ¢t — g(t) deux applications C! sur I intervalle, & valeurs
dans F. Montrer que t — (f(t),g(t)) et t — ||f(t)|| sont C! sur I, et donner l'expression de leurs dérivées.

e & ,.> er bbb doe oL fR,q0>
2l on‘MML( A dfazec
<EA, 9> + 284w 9>
e N(B) = (£
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1.3.4 Multilinéarité

Proposition. Soit Fi, Fy,...,F),,G des espace normés de dimensions finies, I un intervalle de R. Si M :
Fiy x Fy x -+ x F, = G est mutlilinéaire et que les f; : I — F; sont dérivables en a, alors :

M(f1, fa, .- -, fp) o I
t

- G
= M(fu(t), f2(), -, Fo(1))

est dérivable en a et :

(M(fr, for - ) (@) = M(fi(a), fa(a),... (@) + M (fi(a), f3(a). .., fyla)) + ...
+M(f1(a), fo(a),. .., fy(a)

Canbss: S P =y
Pq, Pz‘ P‘; r; @a'eau}'s.
w2 A —s (Pl (D 7 ()

On wobx M. IRARXIR —= IR
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1.3.5 Dérivation d’une fonction composée

Proposition. Soit I, J deux intervalles de R, ¢ : I — Ret g : J— F. On suppose :
e o(I)CJ
e ¢ dérivable en a
o g dérivable en ¢(a)

Alors g o ¢ est dérivable en a et :

(go¢)(a) = ¢'(a) g (¢(a))

Proposition. Avec les notations précédentes, si g est C* sur J et ¢ est C! sur I, alors g o ¢ est C! sur I.

T Y. Tenrz —g—» F
Qo

e

gog) @) = ¢'@-g"(g@)
gy ) o

1\:»'DL.



1.3.6 Caractérisation par les fontions coordonnées

Proposition. Soit B = (e1,...,e,) une base de F, et f; les applications coordonnées de f : I — F dans la
base B. Alors f est dérivable en a si et seulement si chaque f; 'est. Dans ce cas :

f'(a) = Zf{(a)ei

Proposition. Avec les notations précédentes, f est C! si et seulement si chaque f; lest.

Exemple. Justifier que t — (COSt —sint

. est de classe C! sur R, et calculer sa dérivée.
p\ sint  cost

Ov\ e Og'abrn- C.e»o%ru‘wl/ ( W 600:(‘ Coordl. Aesst

s 1K Dbiers

N b— “@k&‘)wo( A
aAlon e




1.3.7 Caractérisation des fonctions constantes

Théoréme. s ‘j: " ‘t{ya_aag

Soit f : I — F une fonction continue sur I, dérivable sur I'intérieur I de I. Alors f est constante si et
seulement si sa dérivée est nulle sur /.

Pl"::w /pv:r 7 477620.&:..4 Cexo A eannees.



1.4 Fonctions de classe C*

Définition. On a déja défini le fait que f soit de classe C! : elle est dérivable et sa dérivée est continue. On
définit la classe C* par récurrence : f est C*t1 si f*) est de classe C'.
On note f® ou %é.
On dit que f est de classe C* lorsqu’elle est C*¥ pour tout k.

Proposition. Si f,g sont de classe C* sur I & valeurs dans F, \, u € K, alors Af + ug est de classe C* et :

(NS +1g)™ = Af0 4 ug®

CF(I, F) est un espace vectoriel.



Proposition. Si f, g sont de classe C* sur I & valeurs dans F et G respectivement, B : Ex F — G est bilinéaire,
alors B(f, g) est de classe C* et :

(B(f, 9))(k) = Z (f)B(f(i)’g(k_i))

k
i=0

Proposition. Si f est de classe C* sur I & valeurs dans F, ¢ est de classe C* sur J intervalle de R et ¢(.J) C I,
alors f o ¢ est de classe C* sur J et :

Vied, (fop) ) =¢'1) ()

f/u.uuu Aenbiney adx

Proposition. Soit B = (ey,...,e,) une base de F, et f; les applications coordonnées de f : I — F dans la
base B. Alors f est C* sur I si et seulement si chaque f; I’est. Dans ce cas :

vtel, fP) = i F® (t)e;
=1



1.5 Limite de la dérivée, classe C* par prolongement

Théoreme. Viz(r Ao Loy Aénsudt

Soit f: [ - Fetael. Si
o [ est continue sur I (en particulier en a)
o f est dérivable sur I \ {a}

. Ft)— 0

t—a

ol
alors f est dérivable en a, et f'(a) = ¢ (et donc f’ est continue en a). ( en sorlk P e 1 2
I )

A

e

)



Théoréme.
Soit f : I~ {a} — F. Si
o fest CFsur I~ {a}

o £, f, ., f*) admettent en a une limite £, ¢1, ..., £} respectivement.

alors f se prolonge en a de fat)f.t:on C* en posant f(a) = ¢, alors f(*)(a) = ¢; pour tout i.

Sost {1 Tdal — €

of @ €7 ThjaS
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2 | Intégration des fonctions a valeurs vectorielles

2.1 Intégrale d’une fonction en escalier sur un segment

Définition. Soit f : I = [a,b] — F. On dit que f est en escalier lorsqu’il existe une subdivdision (aq,. .., an)
de [a, b] telle que sur chaque intervalle |a;, a;+1], f est constante, et on note v; cette constante.
Avec les notations précédente, pour f en escalier, on définit I'intégrale de f sur [a,b] par :

b 1—1
/ ‘th,) dt = Z(ai-H - ai);i’
a i=0

qui ne dépend pas du choix de la subdivision adaptée & f.

f‘. [o1) —— F

£ ff—f-sw



2.2 Intégrale d’une fonction continue par morceaux sur un segment

Rappel. Toute fonction continue par morceaux sur un segment, a valeurs dans un espace normé de dimension
finie, est limite uniforme sur ce segment d’une suite de fonctions en escalier.

Preuve. Dans une base donnée, on approche chaque fonction coordonnée. O

Définition. Soit f : [a,b] — F une fonction continue par morceaux, et (g, )nen une suite de fonctions en escalier
b

qui converge uniformément vers f sur [a, b]. Alors ( / gn(t) dt)n cn converge, et sa limite est indépendante

du choix de la suite (g, )n. On appelle intégrale de f sur [a,b] cette limite commune.



Proposition. Relation de Chasles.

Proposition. Si f et g sont continues par morceaux sur [a, b], A, u € K, alors Af + ug est continue par morceaux
sur [a,b] et :

[ O +u@d=x [ swdrn [ g

Proposition. Soit f continue par morceaux sur [a,b], a valeurs dans F, et uw € L(F, G). Alors uo f est continue
par morceaux sur [a, ] et :

/abuof(t)dt =u(/abf(t)dt)

Prowee
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Proposition. Soit f continue par morceaux sur [a,b], & valeurs dans F. Soit B = (ey,...,e,) une base de F et
fi les applications coordonnées de f. Alors :

/ab f(t)dt = lz:; (/Ifi(t) dt)e;

C’est-a-dire que les coordonnées de l'intégrale sont les intégrales des fonctions coordonnées.

cost —sin t)

™

Exemple. Calculer /2 A(t)dt ou A(t) = (
0

sint  cost

v 7
™, z gy AR
AL = Jota |

1 -1
o A 1



Proposition. Soit f : [a,b] — F continue par morceaux et || - || une norme sur F. Lorsque a < b :

Jo
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Proposition. Soit f continue par morceaux sur [a,b], & valeurs dans F. Soit (f,), une suite de fonctions

continues par morceaux, qui converge uniformément sur [a, b] vers une fonction f continue par morceaux.
Alors :

/abfn(t)dtm/abf(t)dt
A welttor e Bau
(fr-w {c_f" (oo o~—e! 3



2.3

Sommes de Riemann

Proposition. Soit f continue par morceaux sur [0,1]. Alors :

n—-+oo

n—1
%Z J:-(E) N f.(-t?dt
b

Proposition. Soit f continue par morceaux sur [a,b]. Alors :

- f_g- ’ b

k=



2.4 Primitives

Définition. On appelle primitive de f : I — F toute fonction F' : I — F dérivable telle que F' = f.

Théoréeme.

Soit f : I — Fetaec . Sif estcontinue sur I, alors f possede une unique primitive qui s’annule en a,
et c’est :

F . xH/zf(t)dt




2.5 Accroissements finis, formules de Taylor

Inégalité des accroissaments finis.

Soit f : I — F une fonction C' sur I et M > 0 tel que :
Vvt € Ja,bf, |If'()Il < M

Alors :
1£0) — F@)l < M[p—af




Formule de Taylor avec reste intégral.

Soit f : I — F une fonction de classe C"**, alors pour tout a,z € I :
k=0
ou encore, pour tout a € I et h tel que a+h €I :

fla+h)= Z f<k>( /#uf(”“)(a—i—t)dt
0 n.

Inégalité de Taylor-Lagrange.

Soit f : I — F une fonction de classe C"*1, telle que f("*1) bornée sur I. Alors pour tout a,z € I :

N E-a)f
f@) =Y 7"

k=0

_ n+1
< Eo e
n Y

ou encore, pour tout a € I et h tel quea+h € I :

n

f(a+h)—z

kO

( ) Ilf(”“)III

Formule de Taylor-Young.

Soit f : I — F une fonction de classe C™, alors pour tout a € I, au voisinage de h — 0 :
fla+h)= Z f(k)(a + h"e(h)

On note o(h™) pour désigner la fonction vectorielle h — h™e(h).













