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Compacité

1 |Suites extraites, valeurs d’adhérence d’une suite

1.1 Suites extraites
Définition. Soit (uy)nen et (vn)nen deux suites d’éléments d’un ensemble X. On dit que v est extraite de u
lorsqu’il existe une application ¢ : N — N strictement croissante telle que :

Yn €N, v, = Uep(n)

L’application ¢ s’appelle extractrice.

Exemple. En posant v,, = ug,, on définit la suite extraite de (uy,), des termes d’indices pairs. Ici, ¢ : n+— 2n.
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Remarque. Si (ug(n))n est extraite de (un)n, et que 1 désigne une autre extractrice, la suite extraite de (Ugy(n))n
est-elle :

(Wpogp(n))n OU (Ugop(n))n 7

[b Aol ez da 2V cov W lae el O \M(e(«)

—_—5 ctl-

gog (o)



Proposition. Si ¢ est une extractrice, c’est-a-dire une application : N — N strictement croissante, alors :

v W, on) >
Proves: g stvunrece
, @lo) e dee ()30
- O e g 1 2m
(e(MH) 2 () g ket e
2 o
ot f(wer) > @

o~ Y (amst] &V C@(ﬂw)é i

(

ﬂv\‘k'l We}'fv k€(m]>/(u

s




1.2 Valeurs d’adhérence d’une suite

Définition. Soit (u,)nen une suite d’éléments de E, et a € E. On dit que a est une valeur d’adhérence de
(tn)n si et seulement s’il existe une suite extraite (uyn))n qui converge vers a.

Exemple. Les valeurs 1 et —1 sont des valeurs d’adhérence de la suite (cos %)
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Proposition. On conserve les notations de la définition. Alors a est valeur d’adhérence de (uy,)y si et seulement
si 'une des conditions suivantes est vérifiée :

(i) Ve >0, {n €N, u, € B(a,e)} est infini;
(#) Ve >0, {n € N, u, € B(a,e)} est non majoré;

(1i1) Ve >0, Vp e N, {n > p, u, € B(a,e)} est non vide.
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[Q:}i) =) (o) (iii) Ve >0, Vp € N, {n > p, u, € B(a,e)} est non vide.
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Proposition. Soit (u,)nen une suite d’éléments de E. Si (un), est convergente, alors elle admet une unique

valeur d’adhérence, qui est sa limite.
Remarque. La réciproque est fausse en général : une suite peut n’admettre qu’une seule valeur d’adhérence et ne pas

étre convergente.
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2 |Parties compactes d’un espace vectoriel normé

2.1 Définition

Définition. Une partie X de E est dite compacte lorsque, de toute suite d’éléments de X, on peut extraire
une suite converge dans X.

Remarque.
o Il est équivalent de dire que toute suite d’élément de X a au moins une valeur d’adhérence dans X.
e L’ensemble vide & est compact.

e Cette définition est dite « de Bolzano-Weierstrass », par opposition a celle de Borel-Lebesgue qui est hors pro-
gramme.
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2.2 Propriétés

Proposition. Toute partie compacte est fermée et bornée.

Remarque. Nous verrons plus tard que, si E est de dimension finie, la réciproque est vraie. Dans le cas d’un espace de
dimension infinie, ce n’est pas le cas.
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Exemple. On munit 'espace E = K[X] de la norme :

=M
1Pl = M fox]

ol les ay, sont les coefficients du polynéme P. Trouver une suite d’éléments de S(0,1) qui n’admette aucune

Valeur d,adherence. Qu’a-t-on montré :
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Théoréme.

Dans un espace vectoriel normé de dimension finie, les parties compactes sont les parties fermées et
bornées.
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Proposition. Un fermé relatif A d’une partie compacte X est un compact.

Remarque.

e Comme X est compacte, c’est en particulier un fermé et donc dire que A est un fermé relatif de X revient a dire
que c’est un fermé de E.

e On a en fait ’équivalence, lorsque A C X et X compacte :

A fermée <= A compacte
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Proposition. Une suite d’éléments de X compacte converge si et seulement si elle admet une unique valeur
d’adhérence.
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2.3 Produit d’une famille finie de compacts

Proposition. Soit (E1, | - ||l1), -, (Ep, | - ||p) des K-espaces vectoriels normés. On considére, pour chaque i €
{1,..., p}, un compact X; de E;. Alors : X = X x --- x X, est un compact de E = E; x --- x E,, muni

de la norme produit.

Remarque. Ainsi, un produit (fini) de compacts est compact.
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