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Théoréme de Pythagore.

x et y sont orthogonaux si et seulement si ||z +y||% = ||z]|? + ||y]|?

Cas d’une famille finie de vecteurs. Si (vq,...,v,) est une famille orthogonale, alors
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2.2 Sous-espaces orthogonaux

Définition. Soit F' et G deux sous-espaces vectoriels de E. On dit qu’ils sont orthogonaux si et seulement si :
Ve F,Vye G,z Ly

On note F' 1L G.
Proposition. Lorsque F' | G, la somme F + G est directe, et on la note FF (D G.

Proposition. Si (F})1<i<p est une famille de sous-espaces deux a deux orthogonaux, alors leur somme est directe

P
et on la note D F;.
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2.3 Sous-espace orthogonal d’une partie

Définition. Soit A une partie de E. On appelle orthogonal de A I’ensemble :

At={z€FtqVacA z1la}

Exemple. {0p}t = E et E+ = {0g}.

Proposition. Soit A une partie de E espace préhilbertien.

o A’ est un sous-espace vectoriel de E
e Si AC B, alors B+ c A+

o A L B signifie que A C Bt et BC AL,

Remarque. Pour la derniére propriété, penser a deux droites dans l’espace usuel de dimension 3.
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2.4 Orthogonal d’un sous-espace vectoriel

Proposition. Soit F' un sous-espace vectoriel de E. Alors F* est orthogonal & F :
FQF*+

mais, en général, F O F+ ¢ E.
Exemple. Soit E = C°([0,1],R) muni de son produit scalaire usuel, et F le sous-espace vectoriel des fonctions
polynomiales. Déterminer F1.

emarque. On verra au § 4 que, lorsque F est de dimension finie (en particulier dans un espace euclidien), F* et F
sont supplémentaires.
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3 |Bases orthonormées d’un espace euclidien

Dans cette section, F est un espace euclidien de dimension n € N*.

3.1 Existence de bases orthonormées

Définition. On appelle base orthonormée de E toute base de E qui soit aussi une famille orthonormée.
Proposition. Toute famille orthonormée de n vecteurs, lorsque n = dim E, est une base orthonormée.

Théoréeme.

| Tout espace euclidien admet au moins une base orthonormée.

Remgrque. On verra au § 4.4 un algorithme de construction d’une telle base.

Exgmple. Avec le produit scalaire usuel de M, (R), la famille :

1 1
((Eii)lgigm (E(E“ i Eji)>1<i<j<n7 (E(EU - Ejl)>1<i<j<n>
est une base orthonormée.
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V 4 |Projection orthogonale sur un sous-espace de dimension finie

4.2 Projection orthogonale sur un sous-espace de dimension finie

Définition. Soit F' un sous-espace vectoriel de dimension finie d'un espace préhilbertien E. On appelle projec-
tion orthogonale sur F, et on note pr, la projection sur F' parallelement a F=*.

Remarque. Rappelons que, par définition, pr(z) est I'unique vecteur y tel que :

yeF

y—zeFt
Ceci fournit une méthode de détermination de pr(x) par résolution d’un systéme linéaire lorsque l’on connait une
famille génératrice de F'.

Remarque. On a supposé F' de dimension finie, mais si F est de dimension infinie et que F®F+ = E, alors la projection
orthogonale est bien définie.
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Proposition. Si (eg,...,ep,) est une base orthonormée de F, alors :

Remarque. Ceci fournit une seconde méthode de détermination de pr(z), lorsque I'on connait une base orthonormée
de F.



Exemple. Soit a € E un vecteur non nul. Déterminer l'expression de la projection orthogonale sur Vect(a), et
celle sur Vect(a)=.
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Exemple. Dans E = C%([0,1],R) muni de son produit scalaire canonique, déterminer le projeté orthogonal
de t — t? sur F = Vect(t — 1,t — t).
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W 4.3 Distance a un sous-espace vectoriel de dimension finie

Définition. Soit F' un sous-espace vectoriel de F, et x € E. On appelle distance de z a F' la quantité :

(e, F) = Inf [lo — y]

Théoreme.

Si F' est de dimension finie, alors le projeté orthogonal de x sur F est I'unique vecteur de F' qui réalise
la distance précédente :
C’est I'unique gy € F tel que :

T — = Min ||z —

lz = oll = Min |z —y]

Ainsi :
d(z, F) = ||z — pr(@)|| = V/lz|I> — lpr(z)|?
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Exemple. Justifier I'existence et déterminer :
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