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Espaces préhilhertiens réels

Dans ce chapitre, E désigne un R-espace vectoriel.

1 Produit scalaire et norme associée

LQ'. EXE —s (1

Définition. On appelle produit scalaire sur E une forme bilinéaire, symétrique, positive et définie-positive
sur F, c’est-a-dire, en notant ¢ cette application :

« ¢¢(2) extil:

e @ est a valeurs dans R;

1.1 Produit scalaire

o  est linéaire par rapport a chacune de ses deux variables;

s Vz,y € E, o(z,y) = ¢(y,2);
e Vx € E, p(x,x) 20;
e Vx €E, p(r,z) =0 = 2 =0.

Remarque. La symétrie et la linéarité par rapport a I'une des variables suffit a justifier la bilinéarité.
Notation. On note en général (z,y), (xz|y) ou x - y le produit scalaire de x avec y.

Définition. Un espace vectoriel sur R, muni d’un produit scalaire, s’appelle un espace préhilbertien.
S’il est en plus de dimension finie, on dit que c’est un espace euclidien.
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1.2 Exemples de référence

Remarque. Les exemples de cette section figurent explicitement au programme, et peuvent donc étre utilisés directement.

Définition. Sur R”, le produit scalaire canonique est défini par :

n
(@,y) = > Tyn
k=1

o x=(x1,...,2n) et y=(Yy1,--,Yn)-

Définition. Sur M, 1(R), le produit scalaire canonique est défini par :

X4 %a X, Y)=XxTy
N ' -

Remarque. I coincide avec le produit scalaire canonique de R™, via I'identification usuelle entre une matrice colonne
et un n-uplet.
On trouve parfois la définition (X,Y) = tr(X 'Y). En effet, on a XY € M;(R). La trace permet ici d’en faire un
réel plutét qu’une matrice 1 x 1. On accepte cependant souvent de confondre R et M1(R).
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Définition. Sur M,, ,(R), le produit scalaire canonique est défini par :
(A,B) =tr(A"B)
Si A = (aij)ij et B = (bij)ij, on a de plus I'expression :
(A, B) = Z a;jbij
1<i<n
1<i<p

Il s’agit donc de la somme des produits terme a terme des deux matrices.
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Définition. Sur C°([a,b],R), le produit scalaire canonique est défini par :

b
(f. ) = / f(H)g(t) dt



1.3 Autres exemples

Remarque. Méme s’ils sont trés classiques, les exemples de cette section ne figurent pas explicitement au programme.

Exemple. En confondant polynome et fonction polynomiale associée, R[X] est muni du produit scalaire défini
par :

(P.Q) = /O P(HQ(H) dt

Exemple. Toujours sur R[X], montrer que

+o00o
(P.Q) = / P(HQ(t)e " dt

définit un produit scalaire.
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Exemple. Soit w une fonction continue, & valeurs strictement positives sur un intervalle I. On note :

E={feCI,R) t.q. f>w intégrable sur I}

C’est un espace vectoriel, que ’on peut munir d’un produit scalaire en posant :

(f.9) = / gty (t) dt



1.4 Inégalité de Cauchy-Schwarz

Inégalité de Cauchy-Schwarz.

Pour tout z,y € E, on a :

Kz, y)| < v/ (z,2)\/(y, v)

,L’égalité a lieu si et seulement si et y sont colinéaires.

Rémarque. On notera ||z|| = \/(z,z) la norme associée au produit scalaire. L’inégalité de Cauchy-Schwarz s’interpréte
bien géométriquement.

Inégalité de Minkowski. Pour tout z,y € E, on a :

Vie+y,z+y) <o) +/(y,y)

L’égalité a lieu si et seulement si et y sont colinéaires et de méme sens (on dit parfois positivement liés).

Remarque. Avec ||z|| = /(z,z), I'inégalité de Minkowski n’est rien d’autre que I'inégalité triangulaire sur la norme
euclidienne.
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1.5 Norme euclidienne

Définition. On appelle norme euclidienne associée au produit scalaire (-, -) application :

-1 s 2= ] = /(2 z)

ition. est une norme.
Proposition. C’est
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Définition. Un vecteur de norme 1 est qualifié d’'unitaire.
Proposition. Si E est muni de sa norme euclidienne, le produit scalaire est continu sur £ x E
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1.6 Identités remarquables

Proposition. On a les identités remarquables suivantes :
lz +ylI* =z + lyl* + 2z, y) llz = ylI* = llzl|* + [lyll* - 2(z, y)

les identité rZe polarisation :

(w.9) = 3 (Il + 911> = ol ~ Ily)?) (.9) = 1 (2 + 9l = 1z~ yI?)

identité du parallélogramme :

lz + ylI* + llz = ylI* = 2([l=]1* + 1ylI*)

U‘Md—ta[(l—_- <7«¢-a , Nty S



2 | Orthogonalité

2.1 Vecteurs orthogonaux

Définition. Deux vecteurs x et y sont dits orthogonaux si et seulement si :

(z,y) =0
On note dans ce cas : x L y.

Remarque. Le vecteur nul est orthogonal a tous les vecteurs de E, et un vecteur orthogonal a tous les vecteurs de E
est nul.

Définition. Une famille (v;);c; de vecteurs de E est dite orthogonale si et seulement si :
Vi,jel, i#j = (vi,v;) =0

Elle est dite orthonormeée si et seulement si :

VZ)J €I7 <Uiavj> 2621 = {0 Sll#]

1 sii=j




Proposition. Toute famille orthogonale de vecteurs non nuls est libre.
Toute famille orthonormée est libre.
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Exemple. Les polynomes élémentaires de Lagrange forment une famille libre.
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3.3 Coordonnées dans une base orthonormée
Proposition. Soit B = (e, ...,e,) une base orthonormée de E, et x un vecteur de E. Ses coordonnées dans B
<617 17)
sont : : , ¢’est-a-dire :

(en, )

T = Z(ei,x)ei

i=1

Remarque. Si la base n’est qu’orthogonale, il faut adapter la formule en normant les vecteurs.
Si la base n’est pas orthonormée, il n’y a pas d’expression simple des coordonnées a I’aide du produit scalaire.
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Proposition. Soit B une base orthonormée de F, x et y deux vecteurs dont les coordonnées sont respectivement

x Y1
X=1: et Y =| : |. Alors:
Tn Yn

n
<I,y> = XTY (Z,y) = szyz
i=1

]l = VXTX [zl = ”fo
i=1

Remarque. On voit ici 'avantage des bases orthonormées : les formules de calcul du produit scalaire et de la norme
sont celles du produit scalaire et de la norme canonique de R™.
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Proposition. Soit B = (eq,..., en) une base orthonormée de E et u € L(E). On note M = (m;;);; la matrice
de u relativement a la base . Alors, pour tout i, :

mij = <€i, u(ej))
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