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4 |Topologie induite

4.1 \Voisinage relatif, ouvert relatif

Définition. Soit (E, || - ||) un K-espace vectoriel normé et A une partie quelconque de E. Soit a € A et X C A.
On dit que X est un voisinage relatif de a dans A §'il existe r > 0 tel que B(a,7r) N A C X

Remarque. Ainsi, les voisinages relatifs de a dans A sont les intersections avec A des voisinages de a (dans E).

Définition. On conserve les notations précédentes. On dit que X est un ouvert relatif de A si et seulement
s’il est voisinage relatif de chacun de ses points, c¢’est-a-dire :

Vae X, Ir >0t.q. Bla,ry)NACX

Proposition. X est un ouvert relatif de A si et seulement s'il existe U ouvert (de E) tel que X =U N A.

Remarque. On dit parfois que U N A est la trace laissée par U sur A.
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Exemple. Les parties suivantes sont-elles des ouverts relatifs de [0, 1] ?

1. 0,1] 3. 0,1/2] 5. [0,1] ~ [1/2,3/4] 7.10,1/2]
2. {0} 4. [0,3/4] 6. 10,1
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4.2 Fermé relatif

Définition. Soit (E, |- ||) un K-espace vectoriel normé et A une partie quelconque de E. On dit que X C A est
un fermé relatif de A lorsque A \ X est un ouvert relatif de A.

Proposition. X est un fermé relatif de A si et seulement s’il existe F fermé (de E) tel que X = F N A.

Remarque. On dit parfois que F' N A est la trace laissée par F sur A.

f

F fomt-

Caractérisation séquentielle. X est un fermé relatif de A si et seulement si, pour toute suite (x,,)nen d’éléments
de X qui converge vers un élément ¢ de A, alors £ € X.

Exemple. Est-ce que ]—00,0[ est un ouvert relatif de R* ? un fermé relatif de R* ?
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Exemple. Dans E = R2, on note O = (0,0) et a = (1,1) et on considere A = B(O,1/4) U B(a,1/4). Proposer

quatre parties de A qui sont a la fois des ouverts relatifs et des fermés relatifs de A.
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4.3 Densité

Définition. On dit que X C A est dense dans A lorsque tout élément de A est limite d'une suite d’éléments

de X.
i fAc X








































