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Topologie des espaces vectoriels normés

1 | Points intérieurs, ouvert, voisinage

1.1 Voisinage d’un point

Définition. Soit (£, | - ||) un K-espace vectoriel normé, a € E. On dit qu'une partie V' de E est un voisinage
de a lorsqu'il existe § > 0 tel que :

B(a,0) CV
ou B(a,d) ={z € E, ||z —a| < d}.
Remarque.
e L’usage est d’utiliser une boule ouverte, une inégalité stricte.

e On trouve parfois la notation V(a) pour désigner I'ensembles des voisinages de a.



Proposition.
e Si V est un voisinage de a et V' C W alors W est un voisinage de a.
¢ Une intersection finie de voisinages de a est un voisinage de a.

e Une réunion de voisinages de a est un voisinage de a.

Remarque. Pour la réunion, il suffit en fait qu’un seul ensemble soit un voisinage.

Proposition. Si N et N’ sont deux normes équivalentes, les voisinages de a dans (E,N) et (E, N') sont les
mémes.
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Proposition. Si N et N’ sont deux normes équivalentes, les voisinages de a dans (E,N) et (E, N’) sont les
mémes.
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1.2 Ouvert

Définition. Soit (E, | -||) un K-espace vectoriel normé. On dit qu'une partie U de E est un ouvert lorsque U
est voisinage de chacun de ses points, i.e. :

Ve e U, 36 >0, B(z,6) CU

Remarque. E et @ sont ouverts.
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Proposition. Une boule ouverte est un ouvert.
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Proposition.

e Une réunion d’ouverts est un ouvert :
U U; est ouvert
icl

¢ Une intersection finie d’ouverts est un ouvert :

UiN---NU, est ouvert

Remarque. L’intérét de travailler dans un ouvert, c’est que ses éléments ne sont jamais « au bord ».

Proposition. Un produit fini d’ouvert est un ouvert.
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1.3 Point intérieur, intérieur

Définition. Soit (E, || -||) un K-espace vectoriel normé et A une partie de E. Un point a de E est dit intérieur
a A lorsque A est un voisinage de a, i.e. :

36 >0, B(a,0) C A

On appelle intérieur de A I’ensemble A de tous les points intérieurs a A.

Proposition. A est ouvert si et seulement si A=A

Pybposition. L’intérieur de A est le plus grand ouvert contenu dans A.
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2
2.1

2.4

Points adhérents, fermé, densité

Fermé
Définition. On dit qu’une partie A de E est un fermé lorsque £ \ A = A€ est un ouvert.

Exemple. E et @ sont fermés.

Caractérisations séquentielles

Proposition. Une partie A de F est un fermé si et seulement si, pour toute suite convergente d’éléments de A,

sa limite est dans A.

Remarque. L’intérét de travailler dans un fermé, c’est que « quand on y est, on y reste », méme en passant a la limite.
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2.1 Fermé

Proposition. Une boule fermée est fermée, une sphére est fermée, un singleton {a} est fermé.

roposition.
¢ Une réunion finie de fermés est un fermé.

e Une intersection quelconque de fermés est un fermé.

Proposition. Un produit fini de fermés est un fermé.
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Proposition.
e Une réunion finie de fermés est un fermé. .
o~ CW -
e Une intersection quelconque de fermés est un fermé. ) (
Proposition. Un produit fini de fermés est un fermé.
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2.2 Point adhérent, adhérence, frontiére /

Définition. Soit A une partie de E. On dit que x € E est adhérent a A lorsque :
Vo >0, B(z,0)NA# o
On appelle adhérence de A 'ensemble A de tous les points adhérents & A.

Proposition. A est fermé si et seulement si A = A.

2.4 Caractérisations séquentielles

Proposition. z est adhérent & A si et seulement §’il existe une suite d’éléments de A qui converge vers x.
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Proposition. L’adhérence de A est le plus petit fermé contenant A.
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Proposition. On dispose de 1’équivalence suivante :

r€A <= dx,A)=0 l(go"

Définition. On appelle frontiére de A ’ensemble :

Fr(A) =4~ A

f- (A)



2.3 Densité

Définition. Une partie A de I’espace vectoriel normé (E, ||-||) est dite dense dans E lorsque A = E, c’est-a-dire :

e tout élément de F est limite d’une suite d’éléments de A
ou alors

e Yz € E,Vr>0, B(z,r)NA# .

Exemple. Q est dense dans R.

Exemple. Le sous-espace des fonctions polynomiales est dense dans (C°([a,b],K),| - |leo) par le théoréme de
Weierstrass.
Exemple. Le sous-espace des fonctions en escalier est dense dans I'ensemble (C3,,([a,b],K), || - [|o) des fonctions

continues par morceaux.



Topologie et normes équivalentes

Théoréme.

Les notions topologiques étudiées ci-avant sont invariante par passage a une norme équivalente :
e Si A est un ouvert de (E, Ny) et Ny équivalente a Ny, alors A est un ouvert de (E, Ny).

o L’intérieur de A dans (E, Ny), lorsque Ny équivalente a Ny, est le méme que Uintérieur de A dans
(E7 N2) .

o etc.




4 Topologie induite

4.1 \Voisinage relatif, ouvert relatif

Définition. Soit (E, || - ||) un K-espace vectoriel normé et A une partie quelconque de E. Soit a € A et X C A.
On dit que X est un voisinage relatif de a dans A s’il existe r > 0 tel que B(a,7r) N A C X

Remarque. Ainsi, les voisinages relatifs de a dans A sont les intersections avec A des voisinages de a (dans E).
Définition. On conserve les notations précédentes. On dit que X est un ouvert relatif de A si et seulement

s’il est voisinage relatif de chacun de ses points, c’est-a-dire :

Va € X, Ir >0t.q. Bla,r)NACX

Proposition. X est un ouvert relatif de A si et seulement s’il existe U ouvert (de E) tel que X = U N A.
Remarque. On dit parfois que U N A est la trace laissée par U sur A.




Exemple. Les parties suivantes sont-elles des ouverts relatifs de [0, 1] ?

1. [0,1] 3. 0,1/2]
2. {0} 4. [0,3/4]

0,1] < [1/2,3/4] 7.10,1/2]

5.
6. 10,1



4.2 Fermé relatif

Définition. Soit (E, |- ||) un K-espace vectoriel normé et A une partie quelconque de E. On dit que X C A est
un fermé relatif de A lorsque A \ X est un ouvert relatif de A.

Proposition. X est un fermé relatif de A si et seulement s’il existe F' fermé (de E) tel que X = F N A.

Remarque. On dit parfois que F' N A est la trace laissée par F sur A.

Caractérisation séquentielle. X est un fermé relatif de A si et seulement si, pour toute suite (z,)nen d’éléments
de X qui converge vers un élément ¢ de A, alors £ € X.




Exemple. Est-ce que |—00,0[ est un ouvert relatif de R* ? un fermé relatif de R* ?

Exemple. Dans E = R?, on note O = (0,0) et a = (1,1) et on considére A = B(0O,1/4) U B(a,1/4). Proposer
quatre parties de A qui sont a la fois des ouverts relatifs et des fermés relatifs de A.



4.3 Densité

Définition. On dit que X C A est dense dans A lorsque tout élément de A est limite d'une suite d’éléments
de X.






















