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Espace vectoriel normé
(-1,

1 Normes

1.1 Définitions

Définition. Une application N : E — R est une norme sur F si et seulement si elle vérifie :
e Positivité : Vo € E, N(z) >0
e Séparation : Vz € E, N(z) =0 = z=0g
o Inégalité triangulaire : Vz,y € E, N(z +y) < N(z) + N(y)
o Homogénéité : Vo € E, VA € K, N(A\x) = |A\|N(x)
Si E est muni d’une norme, on dit que c’est un espace vectoriel normé.

Remarque.

e Lorsqu’il y a un risque d’ambiguité (plusieurs normes possibles), c’est le couple (E,N) qui est appelé espace
vectoriel normé.

¢ On note en général ||z||, et non N(z), la norme du vecteur x.

e Lorque ||z|| = 1, on dit que = est un vecteur unitaire. Lorsque z # 0, W:I) est unitaire, de méme direction et
T

méme sens que x.



Exemple. Montrer que l'on définit une norme sur K[X] en posant :

“+oo
1P| = / P(t)le dt

o Ex¢)Gnce

VPemTxd, tro PO cobie (qormen) o Cor=(
Auc v ot kimtn [P(H) = a—(e.v&) e _a-(etrz)
Joe «e‘-—'th'sm& v b .

® a’-nﬁq v:h'

frewtx) bee(arml [PH]E" 20 oo WelBo.

e gbﬁa.t.— -
G Pe IKTX) '3- Pll=O < £ (P(0)) et aF o

mfﬂ'?aaﬂ( ~olle diane £ML[7;W\ Cmc'mf,wib:l

doe HF€lopem lP(H | et o

P ok an infhuiti s coens dc fzo

. 'Iw.é (L

o 0@ e CO)

= -
Leeal - /[?(rno?u-)le’our

g/ (P 1+ 10w & ar
= [Pl +1l

TRQ




S Pelkfe) Aet
[APll = [M (A0 [ &5 ar
= 1Al ["“’ 7B [
= AL (Pl

Te 1 [ ob e cnsvc e 11E ).



Proposition. Pour tous vecteurs de E, on a :
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Proposition. Si F' est un sous-espace vectoriel de E, alors la norme sur E induit une norme sur F.
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Définition. On appelle distance associée a || - || I'application :
d : E2 — [R+
(zy) = ly—=z

Proposition. Pour tous vecteurs de E, on a :
o d(z,y) >0

o d(z,y) = d(y, )
e d(z,y)=0 = z=y
e d(z,z) <d(z,y) +d(y,2)

Définition. Soit A une partie non vide de F, et x € E. On appelle distance de z a A la quantité :

d(z, A) = Inf{||lx — a||, a € A}

Remarque. Siz € A, alors d(z, A) = 0, mais on verra que la réciproque est fausse en général.
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1.2 Norme euclidienne associée a un produit scalaire

Théoreme.

Si E est un espace préhilbertien réel, et (-, -) désigne son produit scalaire, alors I’application définie par :

2]l = v/ {z,x)

définit une norme sur E, appelée norme euclidienne associée a (-, ).
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1.3 Les normes usuelles

1.3.1 Normes usuelles sur K?

Définition. Pour z = (z1, ..., xp) € KP, on définit :

P P
ol =3 lwil, llzlle = [ kol falloe = M |
i=1 i=1

appelées respectivement les normes 1, 2 et infinie.

Théoreme.

I Jls [+ ll2 et || < [l sont des normes sur K.
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1.3.2 Normes usuelles sur I’ensemble des matrices

Exemple. Sur M,,,(R), en notant M = (m;;) 1< on définit :

A£j<p
My = Imil, M2 = 2= \/tr (MTM),
1<im
AL j<p

Ce sont des normes.

1Mo = Max [mj|
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1.3.3 Normes usuelles sur I’espace des polynémes

Exemple. Dans E = K[X], on définit pour P = Z a; X"
=0

Ny(P) = lai| et No(P) = Max |a]
=0 i€{0,...,n}

Ce sont des normes sur FE.
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1.3.4 Normes usuelles sur les espaces de fonctions

Lemme. Pour A partie non vide de R et k € R4 :

Sup{kz, x € A} = kSup(A)

Remarque. Hormis cette proposition e peut pas faire de calcul directement avec des Sup. On travaille sur le
« supande ».

P g
,

(7& %! /]

T‘%"N/* W,Crsbuﬂﬁﬁ»«u—'e&w

w,:{)wv.imﬂ&‘, L.Q_ ,Cn.oz.ip &Akn
’Vw_CA, &% < Q g»«r,)\'hr%ekﬁ

M[V ola 2

Ao er \ﬂml we A < &%H%, uekg

’iQ‘k, OLGA'S= § gvr{mr'ké/\—s
47\, MC-/\'C) £ % ng sa.l ne A

L ,{’)\ET



Définition. Pour X ensemble non vide, on note B(X, K) I’ensemble des fonctions f : X — K qui sont bornées,
c’est-a-dire pour lesquelles :

IM >0, Vze X, [f(z)| <M

Théoreme.

B(X ,[W est un espace vectoriel, que I’on peut munir d’'une norme en posant :

[flloc = Sup |f(z)]
zeX

Remarque. II faut savoir rédiger la démonstration de I'inégalité triangulaire.
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Exemple. Sur E = C%([0,1],R), on définit pour f € E :

1 1
5= [ @lde, U= [ 1F@Rds e = Sup 1f()
0 0 z€[0,1]

Ce sont des normes sur E.
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1.4 Boules

Définition. Soit (E, || - ||) un espace vectoriel normé, et d la distance associée. Pour a € E et r € R, on définit :

e la boule ouverte de centre x et de rayon r > 0 :
B(a,r) ={z € E, d(a,z) <r}
¢ la boule fermée de centre x et de rayon r > 0 : .
BF(a,r) ={z € E, d(a,z) <1} Q(alr)
e la sphére de centre z et de rayon r > 0 :
S(a,r) ={x € E, d(a,z) =1}

Remarque. Un singleton est une boule fermée.

Exemple. Représenter la boule B(0,1) dans I’espace vectoriel R muni de sa norme usuelle.

I

L(o,d) = )-a, 4 [

Exemple. Représenter la boule B(0,1) dans I’espace vectoriel R? muni de ses normes || - ||1, || - |l2; || - lloo
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Définition. Soit A une partie de E. On dit que A est convexe si et seulement si :

Ve,y € A, Ve [0,1], ta+ (1 —-t)ye A

Proposition. Toute boule B est une partie convexe de F.
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1.5 Parties bornées

Définition. Une partie A de E est dite bornée lorsqu’il existe M > 0 tel que :

Ve e A, |z|| < M

Ac &(onr)

Proposition.
o Toute intersection de parties bornées est bornée.

e Toute union finie de parties bornées est bornée.

7%

Remarque. Pour I'intersection, il suffit en fait qu’une seule des parties soit bornée. Pour la réunion, c’est faux dans le
cas d’une union infinie.

Méthode. Pour montrer que A n’est pas bornée, on exhibe une suite (xn)n d’éléments de A telle que ||xn || o e
- n—-+oo

Remarque. Dire qu’une fonction (resp. une suite) a valeurs dans E est bornée, c’est dire que Iensemble de ses valeurs
est borné.
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Exemple. Donner un exemple non borné d’union infinie de parties bornées.
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d
Exemple. On considére 'espace E = K[X], muni des deux normes définies par, si P = Z ap X"
k=0

d

Ni(P)=Y"lax]  Neo(P) = Max |ax]
k=0 S

Que dire de I'ensemble A des polynémes dont tous les coefficients sont égaux & 0 ou a 17
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1.6 Espace vectoriel normé produit

Définition. On considére p espaces vectoriels normés (F;, N;) sur le corps K. Pour z = (z1, ..., Zp) € By X--o %
E,, on définit :

N(z) = ll\éllgzté;J Nl(wj)

Alors N est une norme sur Fy x --- X Ep, et (E; x --- x E,, N) s’appelle I’espace vectoriel normé
produit des ((E;, N;))
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2 |Suites d’éléments d’un ;{space vectoriel normé

2.1 Convergence, divergence /

Définition. Une suite (uy,)nen de t‘ est dite convergente si et seulement s’il existe £ € E tel que :

>0, Ing € N t.q. Vn = nyg, |lu, — | <e

On dit qu’elle est divergente sinon.

Proposition. En cas de convergence, £ est unique et s’appelle la limite de (uy),. On note u, —+> L.
—_— n——+oo

On trouve aussi la notation { = lirf un que 'on évitera d’utiliser.
n—-+oo

Remargue. Dans un e.v.n. autre que R, ¢a n’aurait pas de sens de vouloir définir une limite infinie.
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Proposition. La suite (uy,,), converge vers ¢ si et seulement si la suite numérique (||u,, — £||), converge vers 0.
Son intérét est qu’elle donne un mode de démonstration. Pour montrer que u,, —+—» £, on cherche a majorer
n——+oo

||, — €] par une quantité qui tend vers 0.



Exemple. Etudier la suite (M, ),en- ot M,, = (:_

n



Exemple. Dans E = C°([0,1],R), étudier la suite (f,)nen- o0t f, @ t > t™.
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2.2 Suites bornées

Définition. Une suite (uy,)nen de EN est dite bornée si et seulement s'il existe M > 0 tel que :

Vn e N, ||lunll < M

Proposition. Toute suite convergente est bornée. \
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2.3 Opérations sur les suites convergentes

Proposition. Soit (uy,), et (vy,), deux suites convergentes, de limites respectives ¢ et £'. Soit a et 8 deux
scalaires. Alors la suite (au, + Bv,), est convergente, de limite al + B¢’

Corollaire. IL’ensemble des suites convergentes est donc un espace vectoriel.
Proposition. Si u,, — ¢, alors ||u,| ——— ||¢|-
- n—-+4o0o n—-+4oo

La réciproque est bien siir fausse.
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2.4 Convergence par coordonnées des suites a valeurs dans un espace vectoriel produit

Définition. Soit E est un espace vectoriel de dimension finie p, muni d’une base B = (ey,. .., €p). Soit (un)n
une suite d’éléments de E. A n fixé, u,, s’écrit de facon unique sous la forme :

1 2
Uy = upe; +upes +---+ube,

ot (ul,u?,... ,ub) est le p-uplet des coordonnées de u,, dans la base B.
Pour chaque k € {1,...,p}, la suite numérique (ur),cn est la k-éme suite coordonnée de (u,,),, dans la
base B.

Théoreme.

Avec les notations précédentes, (uy,),, converge si et seulement si les p suites-coordonnées (uk),, convergent.
Dans ce cas, en notant u,, —— £ et, pour tout k, u¥ —— 5, on a :
n——+oo n——+oo
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Exemple. Etudier la suite (A, ),en- définie par :
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Proposition. Soit (2,,),en une suite d’éléments de E = E; x --- x E,. On peut écrire, pour tout n € N :

— (1 P
zn = (z),...,20)
oil les suites (z¥),cn sont les suites composantes de () nen-
La suite (x,,),, converge vers { = ({1,...,£p) si et seulement si :
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3 |Comparaison des normes

3.1 Normes équivalentes

Définition. Deux normes N; et Ny sont dites équivalentes si et seulement s’il existe a, 8 > 0 tels que :

Vz € E, aNi(r) < Na(z) < BN1()

Remarque. Cela revient a dire qu’il existe 3,y > 0 tels que :

Ny < BN1 et N1 < yN»

Remarque. C’est une relation d’équivalence.

Exemple. Dans K?, les normes || - ||, || - [|2 et || - ||oo sOnt deux & deux équivalentes.

ThéorZme (spoiler).

‘ Si E est de dimension finie, toutes les normes sont équivalentes.
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3.2 Invariance du caractére borné, de la convergence

Proposition. Si deux normes N; et Ny sont équivalentes, alors :

e A C F est bornée pour NV; si et seulement A est bornée pour No

e (Un)nen € EN converge vers £ pour N si et seulement si elle converge vers £ pour Ns.
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3.3 Comparer deux normes

Méthode. Comparer Ny et Na, c’est regarder s’il existe a > 0 tel que N1 < aNa et regarder s’il existe 3 > 0 tel que
N2 < BN

e Pour montrer 'existence de « :

— Si E est de dimension finie, on affirme ’existence de « (sans connaitre sa valeur)

— Sinon, on part de Ni(x) que I'on cherche & majorer en faisant apparaitre Na(z). Une valeur possible du
coefficient o devrait apparaitre.

o Pour montrer qu’un tel a n’existe pas, on cherche une suite (x,), d’éléments de E telle que, par exemple, N1 (x,)
soit constante et No(x,) —+> 0, ou alors telle que Ni(xx,) —+> +o0 tandis que Na(z,) reste constante.
n—-+oo n—+oo

Si E = K[X], la suite ne peut pas rester dans un sous-espace de dimension fini K,[X].

Exemple. Dans E = K[X], montrer que les deux normes N; et N précédentes ne sont pas équivalentes.
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Une convergence qui dépend du choix de la norme

On note E 'espace vectoriel des fonctions réelles continues sur [0, 1]. Pour f € E, on note :

1l = / F(B)]dt et N(f) = / (1) dt

(a) Montrer que N est une norme sur E.

(b) Pour n € N, on définit :
f e n(l—nt) sitel0,1/n]
" 0 site]l/n,1]

Calculer N(f,,) et vérifier que, pour la norme N, f, —— 0.
n—-+o0o

(c) Calculer ||fy]l1. Qu’en conclure ?
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420.8

Soit aq,...,a, € R, et N 'application définie par :
N(z1,...,2p) = a1|lx1]| + - - + an|xn|

A quelle(s) condition(s) sur ai,...,a, 'application N définit-elle une norme
sur K".
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420.15

On considere B l'espace des suites réelles bornées, muni de la norme || - ||oc.

(a) Soit a = (an), une suite réelle. A quelle condition nécessaire et suffisante
portant sur la suite a I’application :

+oo
Ng : x> Zanlznl
n=0

définit une norme sur B7?

(b) Comparer dans ce cas Ny et || - || -


















