Pardant les vocances:

Exercice à rédiger

pour le la 27 octobre 7 00

an choix: 260.21 _ 260.23

250.10 - 250.11

130-15 - 130.12

TIPE

 $P(u): E \longrightarrow E$ $x \longmapsto (P(u))(x) = a_0 x + a_1 u(x) + a_2 u^2(x) + \cdots$ uou

leven des nogenx

3 Polynômes annulateurs et réduction

3.1 Une CNS de diagonalisabilité

Théorème.

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Alors : u est diagonalisable \iff il existe un polynôme annulateur de u scindé à racines simples \iff π_u est scindé à racines simples

Proposition. On peut donc aussi écrire :

$$u$$
 est diagonalisable $\iff \pi_u = \prod_{\lambda \in \mathrm{Sp}(u)} (X - \lambda)$

Exemple. Un projecteur, une symétrie sont diagonalisables.

(In scindé single => u diagnobiselle)

3.2 Sous-espaces stables

Proposition. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Soit F un sous-espace vectoriel de E. On suppose que F est stable par u, et on note u_F l'endomorphisme induit par u sur F. Alors :

$$\chi_{u_F} \mid \chi_u \quad \text{et} \quad \pi_{u_F} \mid \pi_u$$

E MC &(E) F stoble par u. On peut defour l'ender indent · En bon adaptec, Mat (u) = (Mat (ux) 1 + $\chi_{\mu}(x) = det \begin{pmatrix} xI_1 - B & * \\ \hline 0 & \Theta \end{pmatrix}$ = $\chi_{u_F}(x) \times$

done Xup Xu

. On a acom' The The En effet: Rque The est annulation de esp: ¥n∈F $T_{n}(u_{\beta})(n) = \sum_{n=1}^{d} a_{\xi} u_{\beta}^{\xi}(n)$ où The = Sag X & $= \sum_{k=0}^{d} \alpha_k u^k(n)$ Car pour n EF, up (n) = u (n) = 11, (a) (n) = 0 (m) = 0= done The annele up, done The The.

Proposition. Avec les notations précédentes, si u est diagonalisable, alors u_F est diagonalisable.

Preux: Si in diagnolisally

The scende single

don The sorrde single can The The

dens up diagnolisally.

Diagonalisation simultanée

240.5

Dans une espace vectoriel E de dimension finie, on considère deux endomorphismes u et v diagonalisables tels que $u \circ v = v \circ u$.

- (a) Montrer que les sous-espaces propres de v sont stables par u.
- (b) Montrer que l'endomorphisme induit de u à un sous-espace propre de v est diagonalisable.
- (c) Montrer qu'il existe une base de E constituée de vecteurs propres de u et v.

À sawi ridizi

3.3 Théorème de Cayley-Hamilton

Théorème de Cayley-Hamilton.

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Alors χ_u est annulateur de u.

Corollaire. Si E est de dimension n et $u \in \mathcal{L}(E)$:

f7.2

- $\pi_u \mid \chi_u$
- $\deg(\pi_u) \leqslant n$

Xu E Tu K [x]

ideal de anulation de m.

hug: Panditomin The, on put colaber Xu.
et cherdrer The parent les divisers de Xu.

hug: Pour détermin Xu, ou jeur détermin Tu et cherdur parui les multiple.

Consigneres:

Sp(u) = { cause de pu}

= 4 racións de TIn {

Nu et TIn out les mêus racións

(unais par mêue unlipticiti)

3.4 Traduction matricielle des résultats précédents

Théorème.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

A est diagonalisable \iff il existe un polynôme annulateur de A scindé à racines simples

$$\iff \pi_A$$
 est scindé à racines simples

$$\iff \pi_A = \prod_{\lambda \in \mathrm{Sp}(A)} (X - \lambda)$$

Exemple. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^q = I_n$ pour un $q \in \mathbb{N}^*$. Justifier que A est diagonalisable.

Théorème de Cayley-Hamilton.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors χ_A est annulateur de A.

Corollaire.

- $\pi_A \mid \chi_A$

X9. 1 est aumiliation de A

or $X^{9} - 1$ the saindia names singles don C(X)denc $\int_{\mathbb{R}^{2}} A$ diagnolisable dan $M_{m}(C)$ $\frac{q-1}{11}(X-\omega^{2})$ on $\omega=e$