SMPI* MPI

Réduction des endomorphismes et des matrices

Je me souviens

- 1. Que signifie : « F est stable par u »?
- 2. Que peut-on définir lorsque F est stable par u? Comment cela se traduit matriciellement?

On peut définir l'undour. indeut par u sur F $M_F: F \longrightarrow F$

1 Polynômes annulateurs et valeurs propres

1.1 Cas des endomorphismes

Proposition. Soit $u \in \mathcal{L}(E)$, $x \in E$ et $P \in \mathbb{K}[X]$. Si $u(x) = \lambda x$, alors $P(u)(x) = P(\lambda)x$.

Remarque. Rappelons que P(u) désigne un endomorphisme, que l'on évalue en x. Ça n'aurait aucun sens de chercher à évaluer en P le vecteur u(x).

Proposition. Si P est annulateur de $u \in \mathcal{L}(E)$, alors toute valeur propre de u est racine de P.

Si l'annulater de m alor Splu) C fracin de l'S

la comasiteme d'un polynome anulator

donne les cardidates pour été v.p.

Prevex Soil LESp (m).

or n = 0 danc P(X)=0

Exemple: Soit p un projector, ie pop = pAles $X^2 - X$ est annulator de p (1) X(X-1)

don le up sont à checher parais O et 1.
Playable coractionstique de p:

Sort r = ng (p)

E = Imp
$$\oplus$$
 Kerp
en hae adaptie à celte décorporteri
Mar $(y, B) = \left(\frac{In}{O}, \frac{O}{O}\right)$
donc $\chi_{p}(x) = der \left(\frac{xIn-In}{O}, \frac{O}{xInn}\right)$
 $= (x-1)^{n} x^{n-n}$

• prest annulé par
$$X(X-1)(X-2)(X-3)$$

en effet (pop-p)o(p-2Id)o(p-3Id)
Ox(E) = Ox(E)

Proposition. Si E est de dimension finie, $u \in \mathcal{L}(E)$, alors les valeurs propres de u sont les racines du polynôme minimal π_u .

Corollaire. Si E est de dimension finie, $u \in \mathcal{L}(E)$, alors les polynôme caractéristique χ_u et le polynôme minimal π_u ont les mêmes racines.

Remarque. En résumé :

- $\bullet\,$ Les valeurs propres sont les racines du polynôme minimal
- Les valeurs propres sont les racines du polynôme caractéristique
- Si P est annulateur de u, les valeurs propres sont parmi les racines de P

Exemple. On considère un projecteur p d'un espace vectoriel de dimension finie. Calculer son polynôme caractéristique χ_p , son polynôme minimal π_p et donner un autre polynôme, annulateur de p.

1.2 Cas des matrices

Proposition. Soit $A \in \mathcal{M}_n(\mathbb{K})$, $X \in \mathcal{M}_{n1}(\mathbb{K})$ et $P \in \mathbb{K}[X]$. Si $AX = \lambda X$ alors $P(A)X = P(\lambda)X$.

Proposition. Si P est annulateur de $A \in \mathcal{M}_n(\mathbb{K})$, alors toute valeur propre de A est racine de P.

Si P(A)= Dmn(IK)

alar Sp(A) = { racer de PS

Proposition. Si $A \in \mathcal{M}_n(\mathbb{K})$, alors les valeurs propres de A sont les racines du polynôme minimal π_A .

Corollaire. Si $A \in \mathcal{M}_n(\mathbb{K})$, alors les polynôme caractéristique χ_A et le polynôme minimal π_A ont les mêmes racines.

Remarque. En résumé :

- Les valeurs propres sont les racines du polypome minimal
- Les valeurs propres sont les racines du polynôme caractéristique
- Si P est annulateur de A, les valeurs propres sont parmi les racines de P

On cherche TT3.

On chode donc un pl. annelater de J.

(The was un diviseer.)

On cherche une CL noble de puisses de J.

$$\mathcal{T} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\mathcal{J}^{2} = \left(\mathcal{I}\left(\frac{1}{2}\right) = \cdots + \mathcal{I}\left(\frac{1}{2}\right)\right)$$

$$= \begin{pmatrix} m & -m \\ i & i \\ m & -m \end{pmatrix}$$

don J2-mJ=0 ie P=X2-mX

est annulater de J.

Ses disseus soit X et (X-m) qui viameles

pas \mathcal{T} (cor $\mathcal{T} \neq \lambda \mathcal{I}_n$) dunc $\left| \mathcal{T} \right|_{\mathcal{T}} = X(X-n)$

Rung: donc Sp (J) C O, m {

Un auti pol. anulator: meltiple de ity.

Pel coractinsking

$$= (X-m) | (1) - 1 - 1 - 1 | (1) - 1 - 1 | (1) - 1 | (1$$

Exemple. Calculer le polynôme caractéristique et le polynôme minimal de :

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$

$$T_A = X^m = \chi_A$$

2 Lemme de décomposition des noyaux

2.1 Le théorème

Lemme de décomposition des noyaux.

Soit P_1, P_2 deux polynômes, que l'on suppose premiers entre eux $(P_1 \wedge P_2 = 1)$. On note $P = P_1P_2$. Alors, pour tout endomorphisme u:

$$\operatorname{Ker}(P(u)) = \operatorname{Ker}(P_1(u)) \oplus \operatorname{Ker}(P_2(u))$$

Remarque. On peut ajouter que les projecteurs associés à cette décomposition sont des polynômes en u.

$$u: E \rightarrow E$$
 $R(u): E \rightarrow E$
 $R(u): E$

Preuz:

•
$$l_1 \wedge l_2 = 1$$
 donc per Bizont

 $\exists U, V \in IKEX \}$ to $l_1 \cup l_2 \vee l_2 = 1 = X^\circ$

donc $(l_1 \cup l_2 \vee)(u) = Id_E = u^\circ$
 $l_1(u) \circ U(u) + l_2(u) \circ V(u)$
 $U(u) \circ l_1(u) + V(u) \circ l_2(u) \in \mathcal{R}$

• Sout
$$x \in \text{Ker } P_1(n) \cap \text{Ker } P_2(n)$$

is $P_1(u)(n) = 0$ or $P_2(n)(n) = 0$

do-c por \mathfrak{S}
 $X = U(u) \left[P_1(n)(n)\right] + V(u) \left[P(n)(n)\right]$
 $= 0$

Aros Kenful et Kenful out en some direti.

 $\operatorname{Ker}(P(u)) = \operatorname{Ker}(P_1(u)) \oplus \operatorname{Ker}(P_2(u))$

• D Soit
$$x \in \text{Ven} P_1(u) \oplus \text{Ven} P_2(u)$$

in $\exists x_1 \in \text{Ven} P_1(u) \text{ et } x_2 \in \text{Ven} P_2(u)$

If $x = x_1 + x_2$

$$P(u)(x) = (P_1 P_2)(u)(x_1 + x_2)$$

$$= (P_1 P_2)(u)(x_1) + (P_1 P_2)(u)(x_2)$$

$$= P_2(u) \circ P_1(u)(x_1) + P_1(u) \circ P_2(u)(x_2)$$

$$= O$$

donc x E Vier P(n)

 $\operatorname{Ker}(P(u)) = \operatorname{Ker}(P_1(u)) \oplus \operatorname{Ker}(P_2(u))$

$$P_{A}(u)(n_{A}) = P_{A}(u) \circ P_{Z}(u) \circ V(u)(n)(n)$$

$$= (P_{A} P_{Z})(u) \circ V(u)(n)(n)$$

$$= V(u) \circ P_{A} P_{Z}(u)(n)(n)$$

$$= 0$$

$$= 0$$

$$\bar{u} \quad n_{A} \in \text{Uer } P_{A}(u)$$

$$Pe wiere \quad n_{Z} \in \text{Uer } P_{Z}(u).$$

Remarque. On peut ajouter que les projecteurs associés à cette décomposition sont des polynômes en u.



Also ozi!
$$p_1(n) = n_1$$

$$= p_2(n) \circ V(n)(x) \quad (f prone)$$
On pere $Q = p_2 V$
and $p_1 = Q(n)$

$$e M polynore de l'endomoglum en.$$

<u>Corollaire.</u> Soit P_1, \ldots, P_r des polynômes deux à deux premiers entre eux. On note $P = P_1 \ldots P_r$. Alors, pour tout endomorphisme u:

$$\operatorname{Ker}\left(P(u)\right) = \bigoplus_{i=1}^{r} \operatorname{Ker}\left(P_{i}(u)\right)$$

Corollaire. Soit $P \in \mathbb{K}[X]$ un polynôme annulateur non nul de $u \in \mathcal{L}(E)$. On note :

$$P = \lambda P_1^{m_1} \dots P_r^{m_r}$$

sa décomposition en facteurs irréductibles sur $\mathbb K.$ Alors :

$$E = \bigoplus_{i=1}^r \operatorname{Ker}\left(P_i^{m_i}(u)\right)$$
Ch Ver $P(u) = Q(u)$

2.2 Exemple d'utilisation

Exemple. On s'intéresse à l'équation différentielle :

$$y^{(3)} + 4y'' + 4y' + 3y = 0 (E)$$

où $y: \mathbb{R} \to \mathbb{R}$ est la fonction inconnue.

- 1. Montrer que si ϕ est solution de (E), alors ϕ est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. On considère $u: f \mapsto f'$ endomorphisme de $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Écrire l'ensemble S des solutions de (E) comme $\operatorname{Ker}(P(u))$, où $P \in \mathbb{R}[X]$ est un polynôme que l'on précisera.
- 3. Décomposer P en produit de facteurs irréductibles.
- 4. En déduire la résolution de E par la résolution de deux équations différentielles d'ordre < 3.

① Soil
$$\phi$$
 and ϕ (E) alon ϕ at 3 for downle
et $\phi^{(3)} = -h \phi'' - h \phi - 3 \phi$
derivable
done ϕ (5) at dimidle
done ϕ et h -for dimidle.
par sec, ϕ et h -for dimidle.
 ϕ (1R, 1R)
 ϕ (Soil ϕ (E) = e^{ϕ} (1R, 1R)
 ϕ (S)
 ϕ (S) ϕ (E) = e^{ϕ} (1R, 1R)
 ϕ (S)
 ϕ (S) ϕ

Ami
$$S = Ken P(n)$$

(hug: SeA m ev, son-ev de $e^{\infty}(K_{R})$)
 $P(u): E \longrightarrow E$

P=
$$\times^3$$
 + $4\times^2$ + $4\times$ + 3

On cherch me racci pami

ls devier de 3: $1,-1,3,-3$

$$= (X+3)(X^{2} + 1 X + 1)$$
$$= (X+3)(X^{2}+X+2)$$

et
$$(X+3)$$
 \wedge $(X^2+X+1)=1$

(1) Par le Cerme de noyours:

$$S = \text{Ver } P(u)$$

= $\text{Ver } P_2(u)$

· Recherche de Ker Pr(u)

$$\phi \in \text{Uer } P_{\kappa}(n) \iff (n+3\text{Id})(\phi) = 0$$

$$\Leftrightarrow \phi' + 3\phi = 0$$

$$\Leftrightarrow \phi \in \text{Vect}(x \mapsto e^{-3x})$$

· Lecherche de Ver P2 (n) on recomant un EDI d'ordre 2 à coeff conseils $x^{2} + x + 1 = (x - e^{i\frac{\pi}{3}})(x - e^{-i\frac{\pi}{3}})$ $= \left(\lambda - \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \right) \left(\lambda - \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2} \right) \right)$ $\Leftrightarrow \phi \in \operatorname{Vech}\left(x_{+}, e^{-\frac{x_{+}}{2}} \operatorname{Cay}\left(\frac{\sqrt{3}}{2}x_{+}\right), x_{+}, e^{-\frac{x_{+}}{2}} \operatorname{Sim}\left(\frac{\sqrt{3}}{2}x_{+}\right)\right)$ VerP(n) > ne contr Druc S= \ n = Ae + Be cos \frac{1}{2}x + Ce \frac{1}{2}x

oa A,B, CEIR {

Renarque:

On amaît per "rectorialir" le problère.

$$y^{(3)} + 4y'' + 4y' + 3y = 0 (E)$$

Matrice compagnin.

$$\chi_A = \chi^3 + 4 \chi^2 + 4 \chi + 3$$

 $= (\chi + 3)(\chi^2 + \chi + 1)$
 $= (\chi + 3)(\chi - 3)(\chi - 3)$
saindi single

don A dissorbished dan
$$M_3(C)$$
 $A = P \begin{pmatrix} -3 \\ 3 \end{pmatrix}^2 P^{-1}$
 $Y' = A Y \qquad Ell B = P \\ M_3(C) \end{pmatrix} P^{-1}$
 $M_3(C) \qquad M_3(C) \qquad M_3(C)$
 $M_3(C) \qquad M_3(C) \qquad M_3(C)$
 $M_3(C) \qquad M_3(C) \qquad M_3(C)$

$$Y'(H = A Y(H)$$

(=) # $P = Z'(H) = P D P^{-1} P = Z(H)$

(=) # $Z'(T) = D = Z(H)$

(=) # $Z'(H) = -3 Z(H)$
 $Z'(H) = J^{2} Z(H)$
 $Z'(H) = J^{2} Z(H)$

(=) 3A,B,C∈€ \$

$$3r (r) = 3r$$

$$3r (r) = 3r$$

$$3r (r) = 3r$$

$$-\frac{1}{2} + i \frac{1}{3} + r$$

$$= 3r (r) = 3r$$

$$= 3r (r$$

3 Polynômes annulateurs et réduction

3.1 Une CNS de diagonalisabilité

Théorème.

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Alors :

(i)

(i)

(i)

(i)

(ii)

(ii)

(iii)

Proposition. On peut donc aussi écrire :

$$u$$
 est diagonalisable $\iff \pi_u = \prod_{\lambda \in \mathrm{Sp}(u)} (X - \lambda)$

Exemple. Un projecteur, une symétrie sont diagonalisables.

On sail que
$$E = \bigoplus_{i=1}^{n} E_{\lambda_i}(n)$$

bour
$$P = \frac{1}{11}(X - \lambda_i)$$
 Type $P(u) = O_{u(u)}$

Pom
$$n_i \in E_{\lambda_i^i}(u) = \text{Ver}(u - \lambda_i \text{ Id})$$

$$(X - \lambda_i^i)(u)(n_i) = 0$$

$$\text{don} \quad P(u)(n_i) = 0$$

Don l'endompluse P(n) s'annels sur chaque Exiles

dens son E car E= Ex(n)

Soil P saindé single to Plu)=0

Par dif der polynore minimal, To (P

donc Tou st sandé single.

(iii) => (i)

On suppose The 21 science sight $i Th = \frac{1}{j-1} \left(X - \mu_j \right)$ $i Th = \frac{1}{j-1} \left(X - \mu_j \right)$ $i Th = \frac{1}{j-1} \left(X - \mu_j \right)$ $i Th = \frac{1}{j-1} \left(X - \mu_j \right)$

les (X-py) sont prenses entre cerx. denc, par le lemme de noyanx:

 $E = \text{Ver T}_{n}(n)$ $= \bigoplus \text{Ver } (X - \text{pi})(n)$

= # Ken (u-pj Ide)

Ce sont les espacs propos de un et 209

Epj. (a) & py. Espla)
30 \ 2' py. Espla)

donc u déagardesable