Polynômes d'endomorphisme, polynômes de matrice

ynômes $u : E \longrightarrow E$ lineain $n \mapsto u(n)$ ($f(E), +, 0, \cdot$) algèbre non connectation non intègre $n \mapsto intègre$

1 Polynôme d'un endomorphisme

1.1 **Définition**

Définition. Si $u \in \mathcal{L}(E)$, et $P = p_d X^d + \dots + p_1 X + p_0 \not\models \mathbb{K}[X]$, on définit le polynôme de l'endomorphisme u:

$$P(u) = p_d u^d + \dots + p_1 u + p_0 \text{Id}_E$$

pol. en u

pol. de u

C'est un endomorphisme de E.

On note $\mathbb{K}[u]$ l'ensemble des polynômes de l'endomorphisme u.

On dit qu'un endomorphisme v est un **polynôme de l'endomorphisme** u lorsque $v \in \mathbb{K}[u]$, i.e. lorsqu'il existe $P \in \mathbb{K}[X]$ tel que v = P(u).

Remarque. u^k désigne $u \circ \cdots \circ u$.

P(u) n'est pas de la fonction polynomiale associée à P évaluée en u.

Exemple. Avec $P = X^3 - 2X + 1$, $P(u) = u^3 - 2u + \text{Id}_E$, et donc $P(u)(x) = u^3(x) - 2u(x) + x$.

Définition. On dit que P est annulateur de u lorsque $P(u) = 0_{\mathcal{L}(E)}$. $P = X^3 - 2X + 1 = X^3 - 2X + X^0$ P(u): E - E $P(u) \in \mathcal{L}(E)$ 2 L 3u + Ide) (x) ie tacε ρ(u)(n)=u3(n)-3u(n)+x Plater) (estatt pasproduit de vectors.

1.2 Morphisme d'algèbres $P \mapsto P(u)$

Théorème.

Soit $u \in \mathcal{L}(E)$. On note:

$$\phi_u : \mathbb{K}[X] \to \mathcal{L}(E) \\
P \mapsto P(u)$$

- ϕ_u est un morphisme d'algèbres
- $\operatorname{Im} \phi_u = \mathbb{K}[u]$
- Ker ϕ_u est un idéal de $\mathbb{K}[X]$

Preme:	Mare	4	mozle	in d	algin	s ,					
				n dan							
							en en	knogli	ine de	E)	
	· Pa) = ?							
			on P	\$=0	oz X	٤	Q =	of la	e X &		
				- Max							
							des		. 6		
				= 2	oz X	7 2	Q	2=0	R X		
	D	Б.					امو+ ب	.be) x			
	-	Pn (Q):					15		
				Σ (λ }=°					n dif.		us X(E)
							2 4=2	E LI	(0		44(6)
				λ P(λ b			2(a) b (Q)				
				" YN		P	Jan (de)				

Tyr pu (1) = 1 ie pu (x) = Ide φ. : (IK[X), +, ×,) → (&(E), +, 0, ·) P + P(m) Mgre ofu (PXQ) = pu(P) o ofu (Q) Étape 1: Car où P=Xi Q=X3 φu(Xi x X8) = φu(Xi+1) = uitg = ui ous = \phi_{u}(x^{i}) \cdot \phi_{u}(x^{3}) Etape 2: Can où $P = \sum_{i=0}^{\infty} a_i X^i$ et $Q = X\delta$ Pu (PQ)= Pu (\(\sum_{i=1}^{\infty} a_i \times_{x} \times_{\infty} \tag{\delta}\) = Zai op (xixx) par lineants

$$= \sum_{i=0}^{K} \left(a_i \, \varphi_{ii}(x^i) \circ \varphi_{ii}(x^4) \right)$$

$$= \left(\sum_{i=0}^{K} a_i \, u^i \right) \circ \varphi_{ii}(x^4)$$

$$= \left(\sum_{i=0}^{K} a_i \, u^i \right) \circ \varphi_{ii}(x^4)$$

$$= \left(P_i \circ \varphi_{ii}(x^i) \right)$$

$$= \left(P_i \circ \varphi_{ii}(x^i)$$

Exemple. Comme $P = X^3 - 2X + 1 = (X - 1)(X^2 + X - 1)$, par le morphisme ϕ_u , on déduit $u^3 - 2u + \operatorname{Id}_E = (u - \operatorname{Id}_E) \circ (u^2 + u - \operatorname{Id}_E)$.

$$\begin{array}{lll}
\mathcal{G}(E) \ni u^{3} - 2u + \mathbb{I}d_{E} & x^{3} - 2x_{+} = (x_{-1})(x^{2} + x_{-1}) \\
&= (u - \mathbb{I}d_{E}) \circ (u^{2} + u - \mathbb{I}d_{E}) \\
&= (u - \mathbb{I}d_{E}) \circ (u^{2} + u - \mathbb{I}d_{E}) \\
&= (u - \mathbb{I}d_{E}) \circ (u^{2} + u - \mathbb{I}d_{E}) \\
&= (u - \mathbb{I}d_{E}) \circ (u^{2} + u - \mathbb{I}d_{E}) \circ (u^{2} + u - \mathbb{I}d_{E}) \\
&= (u - \mathbb{I}d_{E}) \circ (u^{2} + u - \mathbb{I}d_{E}) \circ (u^{2}$$

Proposition.

$$\mathbb{K}[u] = \{ P(u), \ P \in \mathbb{K}[X] \}$$
$$= \text{Vect} ((u^n)_{n \in \mathbb{N}})$$

 $\mathbb{K}[u]$ est une sous-algèbre commutative de $\mathcal{L}(E).$

Prewe:

$$|K[u]| = Iu \varphi_u \quad \text{or} (1, x, x^2, ..., x^n, ...)$$
 $= \text{Vect} (\varphi_u(x), \varphi_u(x), \varphi(x^2), ..., \varphi_u(x^n)_{c^n})$
 $= \text{Vect} (Ide, u, u^2, ..., u^n, ...)$

None-algiene de $K(E)$ car Ien φ_u .

 $|K[u]| = \text{Commbelie}$
 $|K[u]| = \text{Commbe$

	Règles de	e calcul.	Pour P,Q	polynôme				(u)) (u o P(.) u)	IKEX] com	whalf.	
					(PQ)(u)	$Q(u) = \lambda I$ $= P(u) \circ G$ $Q(u) \text{ comm}$ d_E	Q(u)	(u)					

1.3 Polynôme minimal d'un endomorphisme d'un espace de dimension finie

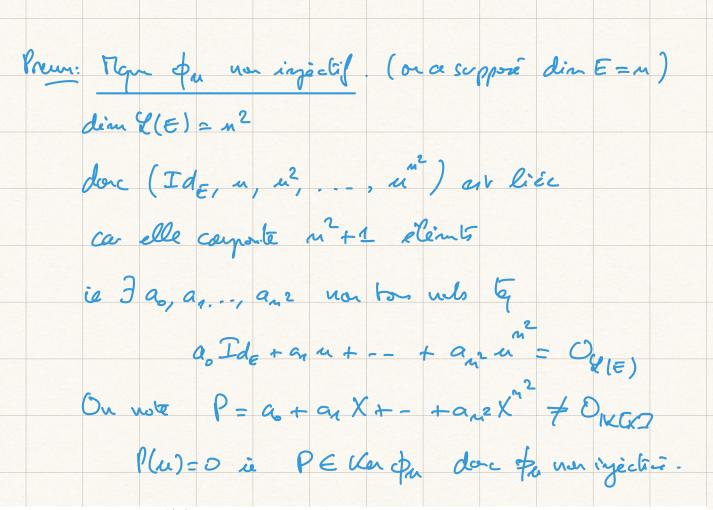
Définition. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Le morphisme :

$$\phi_u: \mathbb{K}[X] \to \mathcal{L}(E) \mathbb{K}[u] \subset \mathcal{C}(E)$$
 $P \mapsto P(u)$

n'est pas injectif. Ker ϕ_u est un idéal non nul de $(\mathbb{K}[X], +, \times)$, appelé **idéal des polynômes annulateurs** de u. Il existe un unique polynôme unitaire, noté π_u et appelé **polynôme minimal** de u, tel que :

$$\operatorname{Ker} \phi_u = (\pi_u) = \{\pi_u \, Q, \, Q \in \mathbb{K}[X]\}$$

Remarque. On peut aussi trouver la notation μ_u pour le polynôme minimal de u.



Proposition. Pour $u \in \mathcal{L}(E)$ où E est de dimension finie :

$$Q(u) = 0 \iff \pi_u \mid Q$$

 π_u est le polynôme unitaire de plus petit degré qui annule u.

Exemple. Déterminer le polynôme minimal d'une homothétie $\lambda \operatorname{Id}_E$. **Exemple.** Déterminer le polynôme minimal d'un projecteur, i.e. un endomorphisme p tel que $p \circ p = p$. **Exemple.** Déterminer le polynôme minimal d'une symétrie, i.e. un endomorphisme s tel que $s \circ s = \mathrm{Id}_E$. **Exemple.** On considère $D: P \mapsto P'$ dans $\mathcal{L}(\mathbb{K}[X])$. Montrer que D n'admet pas de polynôme minimal. On cherche pp. Oh! X2 X et annelator dip F Car (X-X)(p)=p2-p FEDG = E F= Imp = Ver(p-Id=) G= Keip donc μ_{Λ} $\chi^2 - \chi = \chi(\chi - 1)$ et donc my = X ou my = X-1 on my = X(X-1) Si up=X ales p=0 est en projecter ser F=109 G=E Si pp = X-1 alus (X-1)(p) = 0 in p - Id= =0 EXCE) projector où F=E G=109 10 ces: Si p = Ide, pp = X-1 2º cos S: p= Ogles p= X 3°cs S. p = Oel p = Id alor $\mu_{\rho} = \times (x-1)$

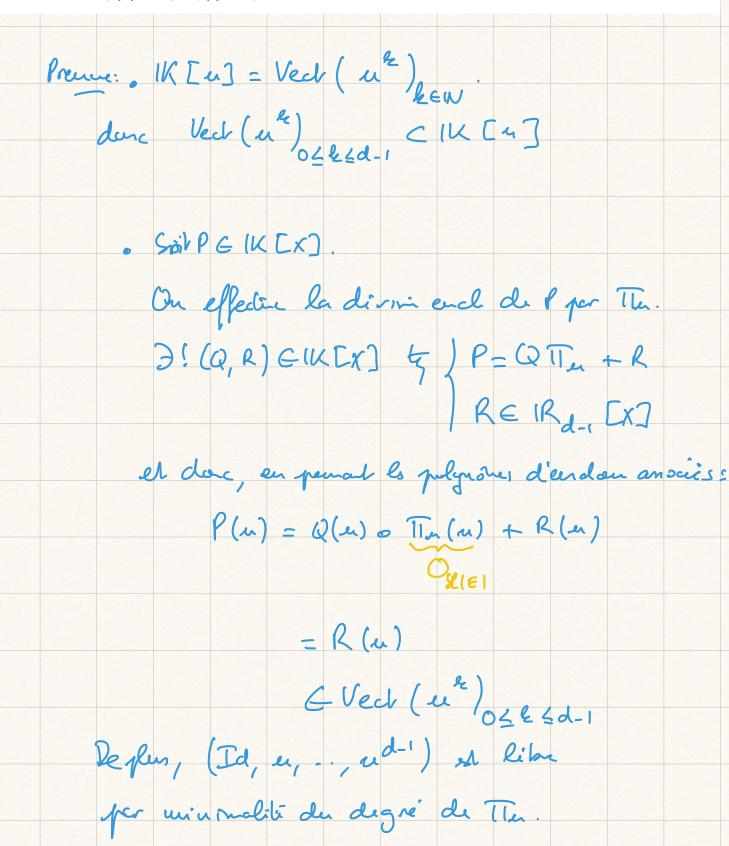
1.4 Base de $\mathbb{K}[u]$

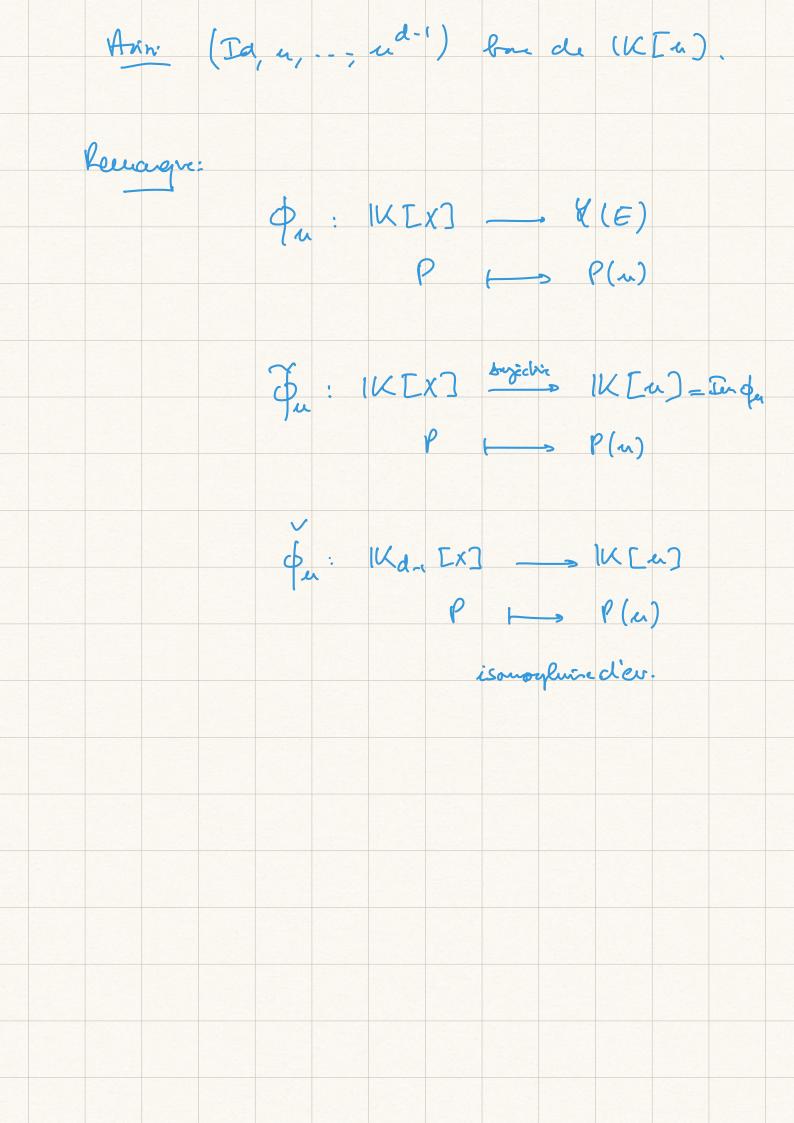
Théorème.

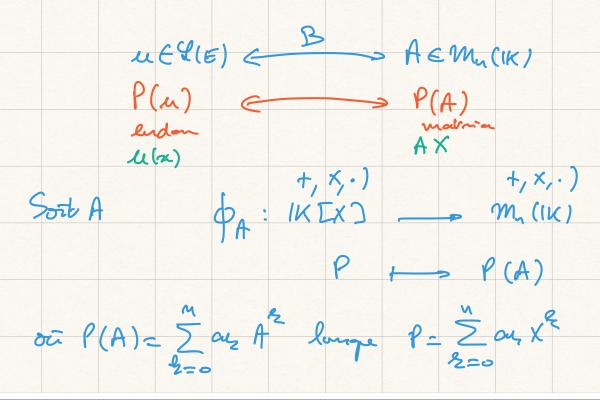
Soit $u \in \mathcal{L}(E)$ admettant un polynôme minimal π_u , et on note $d = \deg(\pi_u)$. Alors $(u^k)_{0 \le k \le d-1}$ est une base de $\mathbb{K}[u]$.

Remarque.

- Dans le cas du théorème, $\dim \mathbb{K}[u] = \deg \pi_u$.
- $\phi_u: P \mapsto P(u)$ induit dans le cas du théorème un isomorphisme entre les espaces vectoriels $(\mathbb{K}_d[X], +, \cdot)$ et $(\mathbb{K}[u], +, \cdot)$.
- Si u n'admet pas de polynôme minimal, c'est-à-dire lorsque ϕ_u est injective, ϕ_u est un isomorphisme d'algèbres entre $(\mathbb{K}[X], +, \times, \cdot)$ et $(\mathbb{K}[u], +, \circ, \cdot)$.







2 Polynôme d'une matrice

2.1 Définition

<u>Définition.</u> Si $A \in \mathcal{M}_n(\mathbb{K})$ et $P = p_d X^d + \cdots + p_1 X + p_0 \in \mathbb{K}[X]$, on définit le **polynôme de la matrice** A:

$$P(A) = p_d A^d + \dots + p_1 A + p_0 I_n$$

C'est une matrice carrée.

On note $\mathbb{K}[A]$ l'ensemble des polynômes de la matrice A.

On dit qu'une matrice B est un **polynôme de la matrice** A lorsque $B \in \mathbb{K}[A]$, i.e. lorsqu'il existe $P \in \mathbb{K}[X]$ tel que B = P(A).

Remarque. A^k désigne $\underbrace{A \times \cdots \times A}_{k \text{ fois}}$.

P(A) n'est pas de la fonction polynomiale associée à P évaluée en A.

2.2 Morphisme d'algèbres $P \mapsto P(A)$

Théorème.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note :

$$\phi_A : \mathbb{K}[X] \to \mathcal{M}_n(\mathbb{K})$$
 $P \mapsto P(A)$

- ϕ_A est un morphisme d'algèbres
- $\operatorname{Im} \phi_A = \mathbb{K}[A]$
- Ker ϕ_A est un idéal de $\mathbb{K}[X]$

Proposition.

$$\mathbb{K}[A] = \{ P(A), \ P \in \mathbb{K}[X] \}$$
$$= \text{Vect} ((A^n)_{n \in \mathbb{N}})$$

 $\mathbb{K}[A]$ est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$.

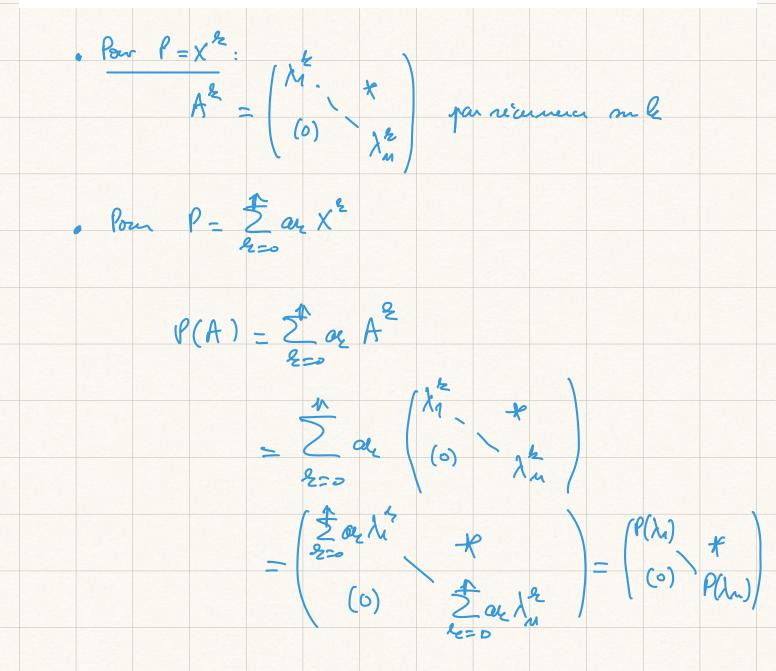
Règles de calcul. Pour P,Q polynômes, $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda, \mu \in \mathbb{K}$:

$$(\lambda P + \mu Q)(A) = \lambda P(A) + \mu Q(A)$$

 $(PQ)(A) = P(A) \nearrow Q(A)$
 $P(A)$ et $Q(A)$ commutent
 $1(A) = I_n$

Si A est triangulaire, les coefficients diagonaux de P(A) sont connus :

Lorsque
$$A = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}, alors P(A) = \begin{pmatrix} P(\lambda_1) & * & \dots & * \\ 0 & P(\lambda_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & P(\lambda_n) \end{pmatrix}$$



2.3 Polynôme minimal d'une matrice carrée

Définition. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le morphisme :

$$\phi_A : \mathbb{K}[X] \to \mathcal{M}_n(\mathbb{K}) \\
P \mapsto P(A)$$

n'est pas injectif. Ker ϕ_A est un idéal non nul de $(\mathbb{K}[X], +, \times)$, appelé **idéal des polynômes annulateurs de** A. Il existe un unique polynôme unitaire, noté π_A et appelé **polynôme minimal de** A, tel que :

$$\operatorname{Ker} \phi_A = (\pi_A) = \{ \pi_A \, Q, \ Q \in \mathbb{K}[X] \}$$

Remarque. On peut aussi trouver la notation μ_A pour le polynôme minimal de A.

Proposition. Pour $A \in \mathcal{M}_n(\mathbb{K})$: $Q(\P) = 0 \iff \pi_A \mid Q$ $\pi_A \text{ est le polynôme unitaire de plus petit degré qui annule } $											
	π_A e	st le polyn		me de prus	petit deg	re qui ann					

Exemple. Dans $\mathcal{M}_n(\mathbb{K})$, déterminer le polynôme minimal de :

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$

Stratigie:	from un	pel.	aun	later.	
	trour in Cherche p	colale	ls per	dissen	A

$$\Pi = 0$$

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

A = 0

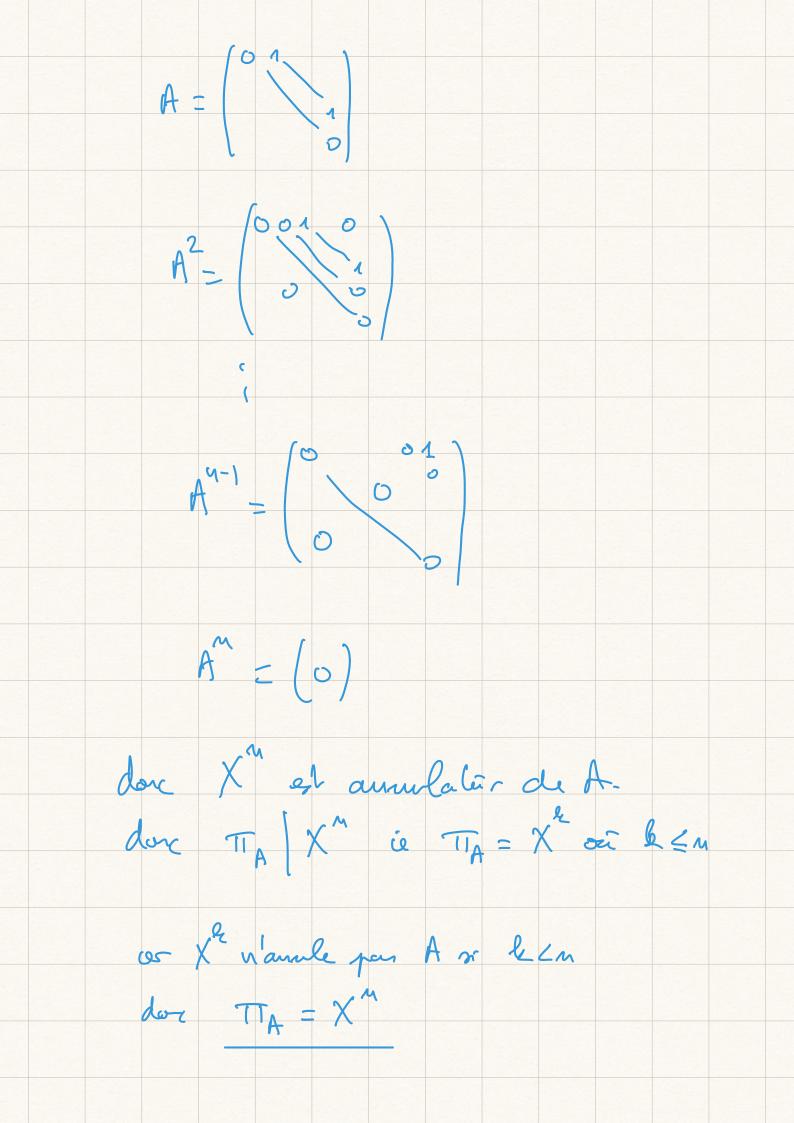
A = 0

A = 0

A = 0

A = 0

A = 0



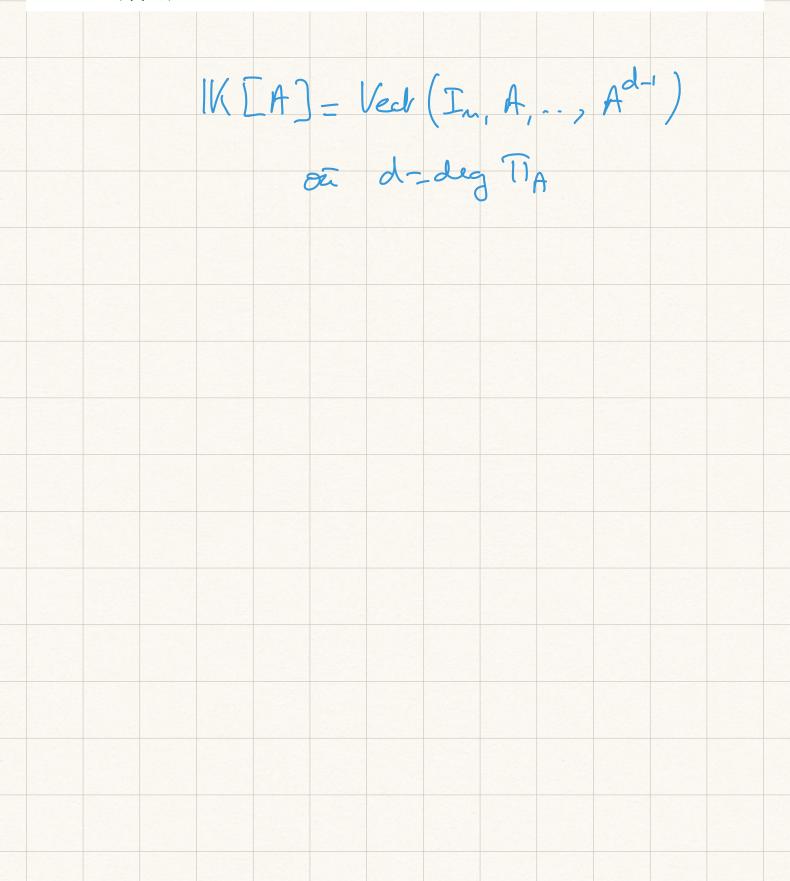
2.4 Base de $\mathbb{K}[A]$

Théorème.

Soit $A \in \mathcal{M}_n(\mathbb{K})$, π_A son polynôme minimal, et on note $d = \deg(\pi_A)$. Alors $(A^k)_{0 \leq k \leq d-1}$ est une base de $\mathbb{K}[A]$.

Remarque.

- $\dim \mathbb{K}[A] = \deg \pi_A$.
- $\phi_A: P \mapsto P(A)$ induit dans le cas du théorème un isomorphisme entre les espaces vectoriels $(\mathbb{K}_d[X], +, \cdot)$ et $(\mathbb{K}[A], +, \cdot)$.



3 Lien entre les deux notions

Proposition. Soit E un espace vectoriel de dimension finie sur \mathbb{K} , \mathcal{B} une base de E et $u \in \mathcal{L}(E)$. Alors :

 $\forall P \in \mathbb{K}[X], \ \operatorname{Mat}(P(u), \mathcal{B}) = P(\operatorname{Mat}(u, \mathcal{B}))$

$orall P \in \mathbb{K}[X], \; \operatorname{Mat}(P(u), \mathcal{B}) = P(\operatorname{Mat}(u, \mathcal{B}))$										
	u E & (E)	2 3	AEML(WC)							
	P(w)		P(A)							
	E R	A= P(A):	QBQ-1 = QP(B)Q-1							
	P(B)									

