Diagonalisation

Je me souviens

- 1. Pour $A \in \mathcal{M}_n(\mathbb{K})$, quel est l'endomorphisme canoniquement associé?
- 2. Que signifie : « F_1, \ldots, F_p sont en somme directe » ?

The Cap lendon de
$$M_{m_1}(K)$$
 boun country $E_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$

Ch ii: $M_{m_1}(K) \longrightarrow M_{m_1}(K)$

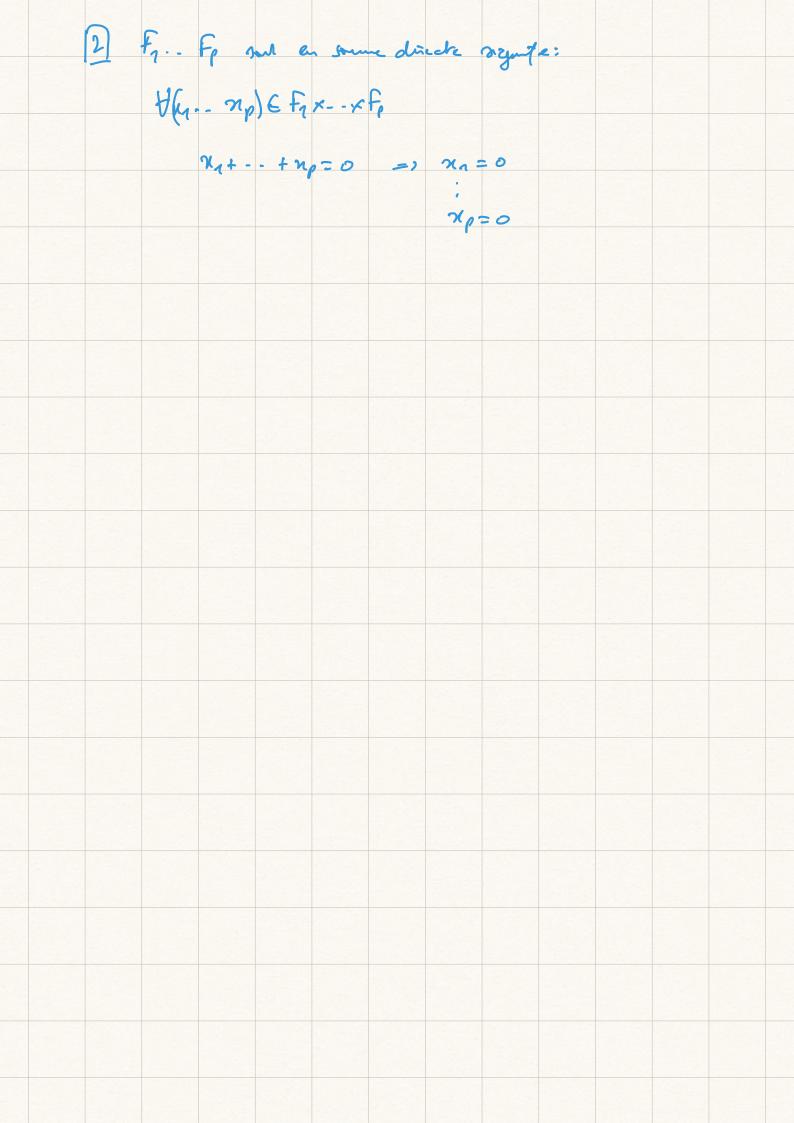
$$X \longrightarrow A \times$$

On class c'al l'indom de K' boun country $e_1 = (1, ..., 0)$

$$e_2 = (0, 1, 0, -..., 0)$$

$$e_{m_1}(0, -..., 0)$$

$$e_{m_2}(0, -..., 0)$$



1 Éléments propres d'un endomorphisme

1.1 Définition

Définition. Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. On dit que λ est valeur propre de u lorsqu'il existe x non nul tel que :

$$u(x) = \lambda x$$
 $u(x) - \lambda x = 0$

On dit alors que x est vecteur propre de u associé à la valeur propre λ .

 $(u-kId)(n)\infty$

Remarque. Insistons : il faut qu'il existe un vecteur non nul tel que...

Remarque. Un vecteur propre, c'est un vecteur non nul tel que u(x) est colinéaire à x.

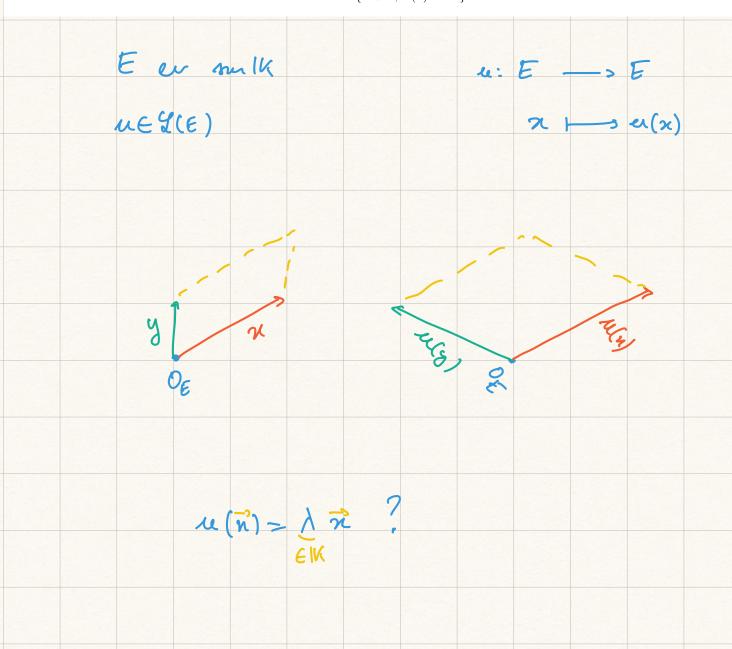
Définition. On appelle **équation aux éléments propres** l'équation :

$$u(x) = \lambda x$$

où l'on cherche les valeurs de λ pour lesquelles il existe des solutions x non nuls à l'équation, et on cherche ces solutions aussi.

Définition. Si λ est une valeur propre de u, on appelle sous-espace propre associé à λ l'espace :

$$E_{\lambda}(u) = \operatorname{Ker}(u - \lambda \operatorname{Id}_{E})$$
$$= \{x \in E, \ u(x) = \lambda x\}$$

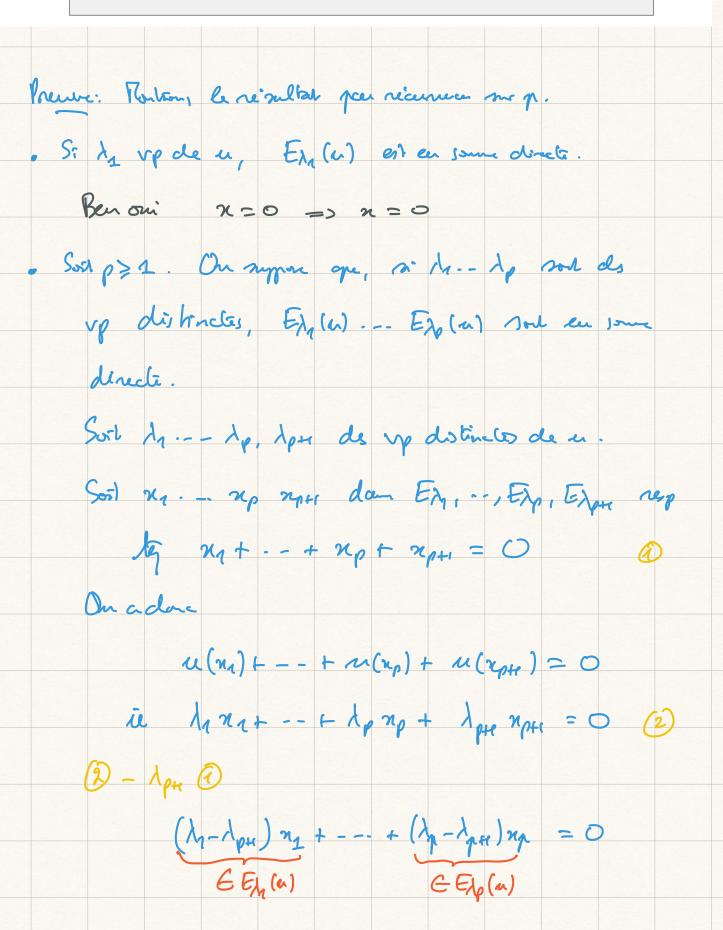


1.2	Propriétés				
	Proposition.	x est un vecteur propre de u si	et seulement si la droit	se vectorielle $Vect(x)$ est stable	par u .
		South or median			
	1231	Soil x vector 7	my de m		
		in motor	32 CK	€ m(n)=1.	
		a kyo w	JACIO	7	
		On yok D=	Sect (n)		
		$u(n) = \lambda$	n l		
		ϵD			
		Vect (n) est	shalle pa	re.	
		On suppor D	stable po	- u	
		on D= Ved	(n)	<i>‡</i> 0	
		Done u(u)			
		ie 3	LEIK G	$u(n) = \lambda n$	
		doc	x et ve	cleir jugue de.	u.
					2
				u(n)	
			24		
			X		
		OE			
		direction more			
		where muse			

Théorème.

Des sous-espaces propres associés à des valeurs propres distinctes sont en somme directe. Plus précisément : si E est un espace vectoriel, $u \in \mathcal{L}(E)$, et si $\lambda_1, \ldots, \lambda_p$ sont des valeurs propres deux à deux distinctes de u, alors la somme $E_{\lambda_1}(u) + \cdots + E_{\lambda_p}(u)$ est directe. On l'écrit donc :

$$E_{\lambda_1}(u) \oplus \cdots \oplus E_{\lambda_p}(u)$$
 ou encore $\bigoplus_{k=1}^p E_{\lambda_k}(u)$

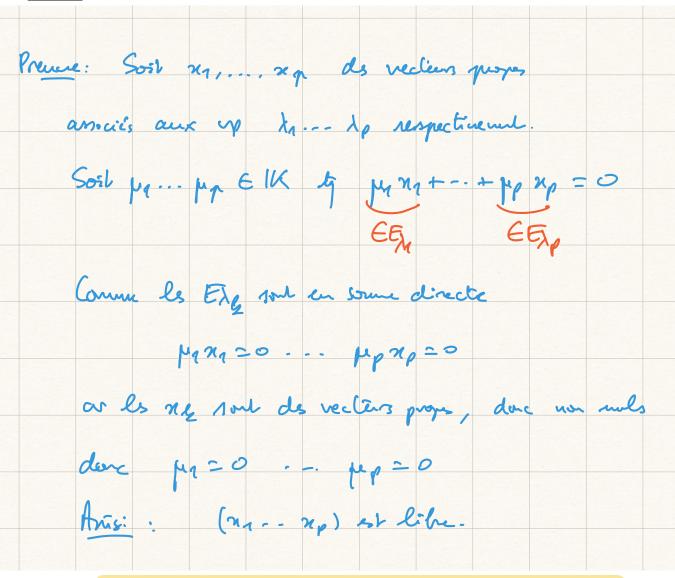


par HR, En(u) .- Exp(u) sont an comme direct done ((/ - / p+1) 2/2 = 0 (λη-ληνε) nη =0 or les le sont distincts donc un = -- = zp = 0 Il reste xpr = 0 . La propriété est vouse pou tout p. Penague: § 6.1

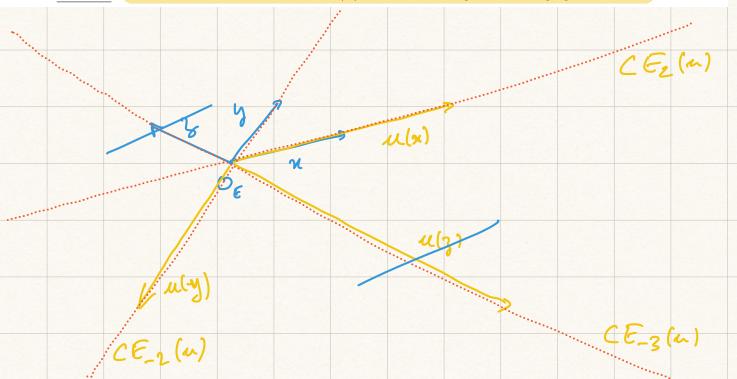
Théorème.

Une famille de vecteurs propres associés à des valeurs propres distinctes est libre. Plus précisément : si E est un espace vectoriel, $u \in \mathcal{L}(E)$, et si $(x_i)_{i \in I}$ est une famille de vecteurs propres associés à des valeurs propres λ_i deux à deux distinctes, alors $(x_i)_{i \in I}$ est libre.

Corollaire. Si E est de dimension finie n et $u \in \mathcal{L}(E)$, alors u admet au plus n valeurs propres distinctes.



Corollaire. Si E est de dimension finie n et $u \in \mathcal{L}(E)$, alors u admet au plus n valeurs propres distinctes.

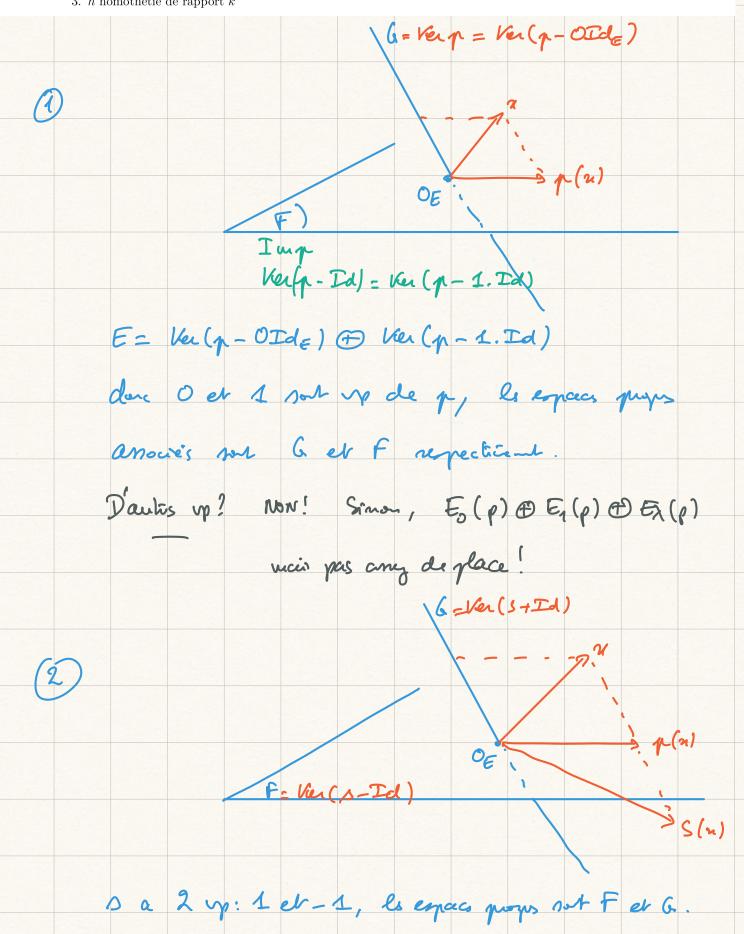


	m= d	im (E)								
		es fa		s lil	ue a	1 a	u yl	~ u	e'lim	5	
		I y									
	Remarque:	ક્રા`	din	E in	finie	, 1	e, di	nèqu	lfat.		
	Proposition. Soit Tout sous-esp	pace propre	$de\ u\ est\ st$	table par	"						
	• Ker u et Im u	sont stable	s par v		Ker (u	-\J	d) s	halle	gar	V	
	Aug : =	041000		12,5							
	hung: à	1,00071									

1.3 Exemples

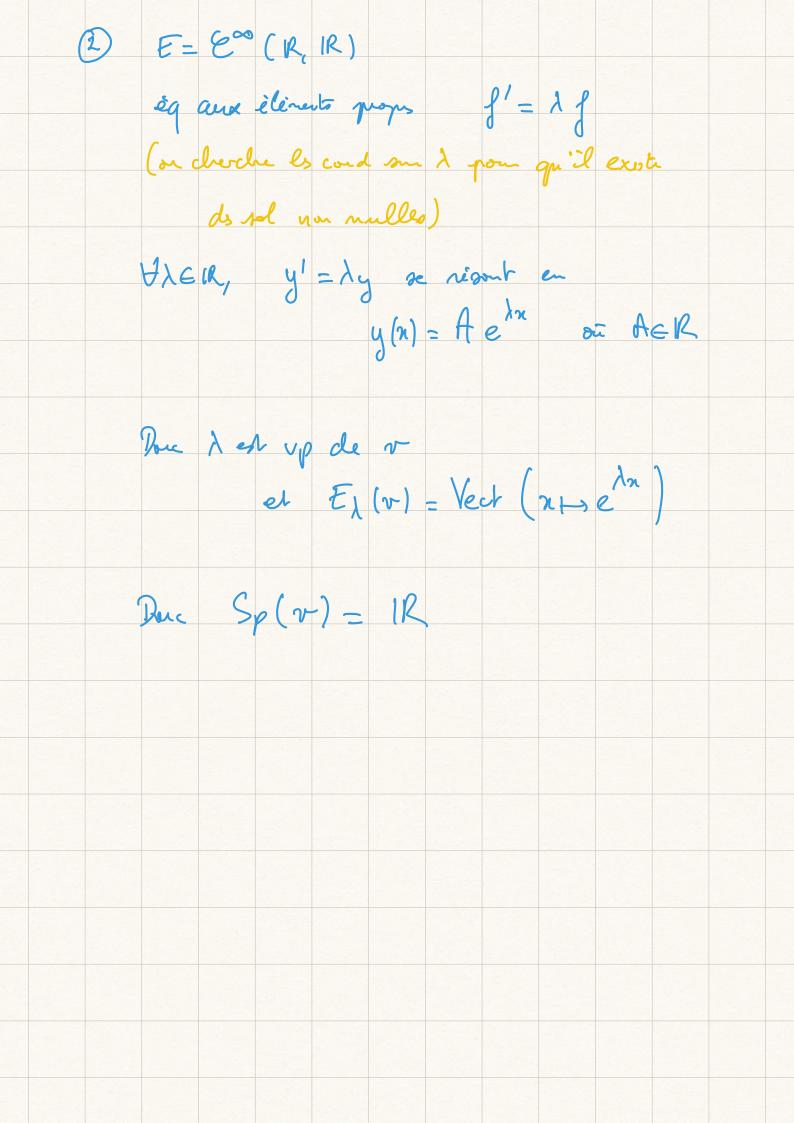
Exemple. Soit E un espace vectoriel. Déterminer les éléments propres de :

- 1. p projeteur de E
- 2. s symétrie de E
- 3. h homothétie de rapport k



Exemple. Déterminer les éléments propres de :

(1) Ég aux élémets props P'= 2P
100: N=0
lég aux élonts pups devier P'=0
dont le rol son (Ko [X)
Aisi: Osh yp.
$E_o(u) = IK_o(x)$
2 ^e cs: λ ≠ 0
Si P \(\rightarrow \) of the P = \(\rightarrow \)
alan deg (P') - deg (P)
-> imposible
Avisi: tout 270 vicot par v. p de eu.
$Sp(u) = \{0\}$ Spectre de en
Sp(u) = {0} Spectre de en = eus. de vp de en



	Exemple.	Donner 1	ın exempl	e simple d	'endomorp	hisme du	plan euclic	lien usuel	qui n'a au	cune valeu	ır propre.	

1.4 En dimension finie

Remarque. Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Pour $\lambda \in \mathbb{K}$, on a :

 λ valeur propre de $u \iff \exists x \neq 0_E, \ u(x) = \lambda x$

 $\iff \operatorname{Ker}(u - \lambda \operatorname{Id}_E) \neq \{0_E\}$

 $\iff u - \lambda \mathrm{Id}_E \text{ non injective}$

 $\iff u - \lambda \mathrm{Id}_E$ non bijective car u endomorphisme de E qui est de dimension finie.

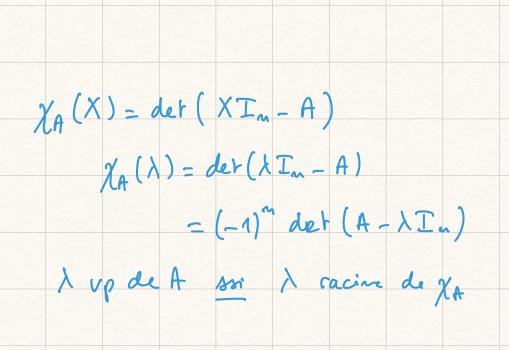
Définition. Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On appelle spectre de u:

$$Sp(u) = \{ \lambda \in \mathbb{K}, \ u - \lambda Id_E \notin GL(E) \}$$
$$= \{ \lambda \in \mathbb{K}, \ \lambda \text{ valeur propre de } u \}$$

Proposition. Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors :

(A up de A as der (A-AIn) = 0

$$u \in \mathrm{GL}(E) \iff 0 \notin \mathrm{Sp}(u)$$



2 Éléments propres d'une matrice carrée

2.1 Définition

<u>Définition.</u> Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les éléments propres de A sont les éléments propres de l'endomorphisme de $\mathcal{M}_{n1}(\mathbb{K})$ qui lui est canoniquement associé :

$$u_A: \mathcal{M}_{n1}(\mathbb{K}) \rightarrow \mathcal{M}_{n1}(\mathbb{K})$$

 $X \mapsto AX$

Ainsi, λ est une valeur propre de A s'il existe une matrice colonne non nulle X telle que $AX = \lambda X$. On dit alors que X est un vecteur propre de A, associé à λ . L'espace $E_{\lambda}(A) = \text{Ker}(A - \lambda I_n)$ est l'espace propre associé à λ , et l'équation :

$$AX = \lambda X$$

est l'équation aux éléments propres. Le spectre de A, noté Sp(A), est l'ensemble des valeurs propres de A.

MAX AX

2.2 Critère d'inversibilité

Proposition. Avec les notations de la défnition :

$$A \in \mathrm{GL}_n(\mathbb{K}) \iff 0 \notin \mathrm{Sp}(A)$$

2.3 Un mot sur le corps de base

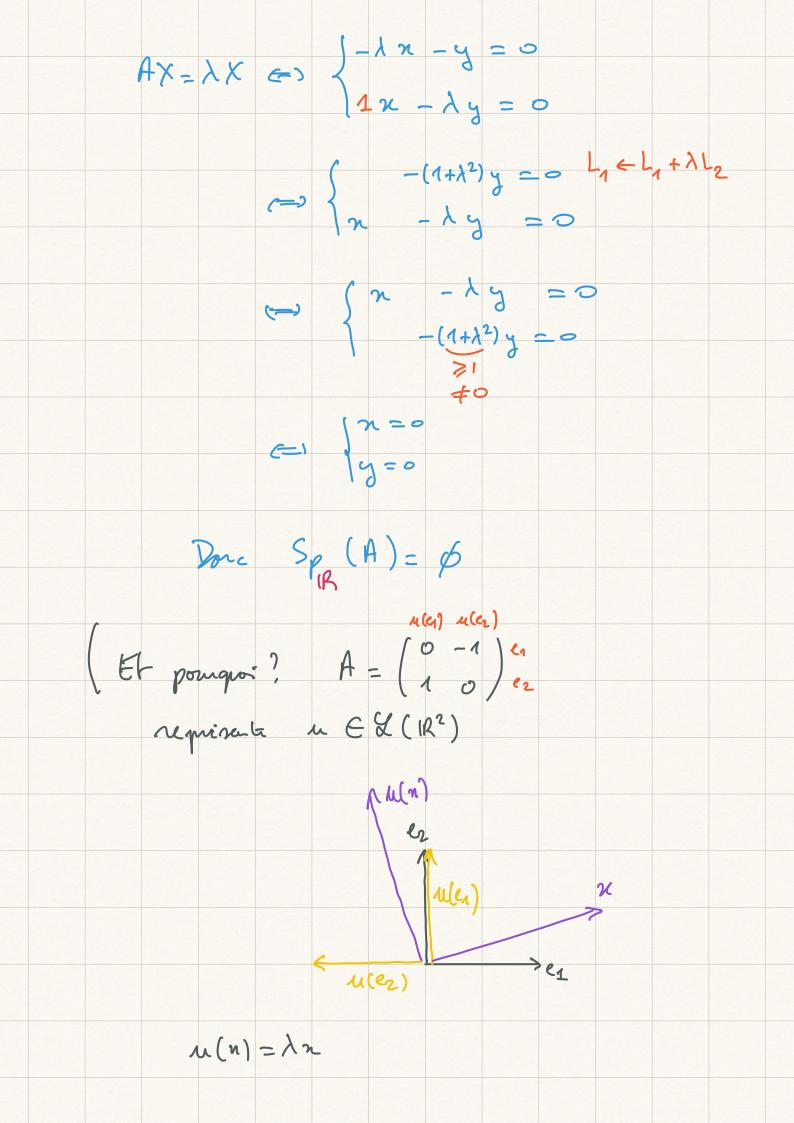
Remarque. Si $A \in \mathcal{M}_n(\mathbb{R})$, on a $A \in \mathcal{M}_n(\mathbb{C})$. On peut donc chercher les valeurs propres réelles ou les valeurs propres complexes de A. On note $\mathrm{Sp}_{\mathbb{R}}(A)$ et $\mathrm{Sp}_{\mathbb{C}}(A)$ et on a :

$$\operatorname{Sp}_{\mathbb{R}}(A) \subset \operatorname{Sp}_{\mathbb{C}}(A)$$

Exemple. Déterminer les valeurs propres de $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Proposition. Plus généralement, si \mathbb{K} est un sous-corps de \mathbb{K}' et $A \in \mathcal{M}_n(\mathbb{K})$, alors $\mathrm{Sp}_{\mathbb{K}}(A) \subset \mathrm{Sp}_{\mathbb{K}'}(A)$.

Proposition. Plu	s generalement, si k est un sous-coi	ps de \mathbb{K}' et $A \in \mathcal{M}_n(\mathbb{K})$, alors $\mathrm{Sp}_{\mathbb{K}}(A) \subset \mathbb{K}$	$\operatorname{Sp}_{\mathbb{K}'}(A).$
Ee	v om IR		
a Elle	2 2821.7		
Zz		(0.	0
		$A = \begin{pmatrix} a_{n_1} \\ a_{n_2} \end{pmatrix}$	- Jun
	. [m]		a.)
	pu(n)	(Sing)	- 42~
	1 x 3 2 11	$\in \mathcal{M}_n$	(R)
	24		
ne 8	((E)	A E Mn (CI
		Ma (C) m (c)
u(xn	+ my) = / a (x)+ m.	u(y) u _A : mm (c), Mn, (C)
λ	EIR	2	- A2
740			MZ MZ
		Sp(A) 2	$S_{\bullet}(A)$
		Sp(A) 2	76
		10-17	
hecherche	ds up wells de	A= (10)	
ع			
<u> </u>	dux elements jug	*6):	
	aux élément prop AX=XX	To LEIR X.	- [M) - M (IR)
	1 / - / /	où leir X:	(9/ 21(11)
			<i>‡</i> O



Rechardse ls up complex did

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_2(C)$$

Req aux ilimst props:
$$A \times - \lambda \times \text{ out } \lambda \in C$$

$$X = \begin{pmatrix} y \\ y \end{pmatrix} \in M_{21}(C)$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

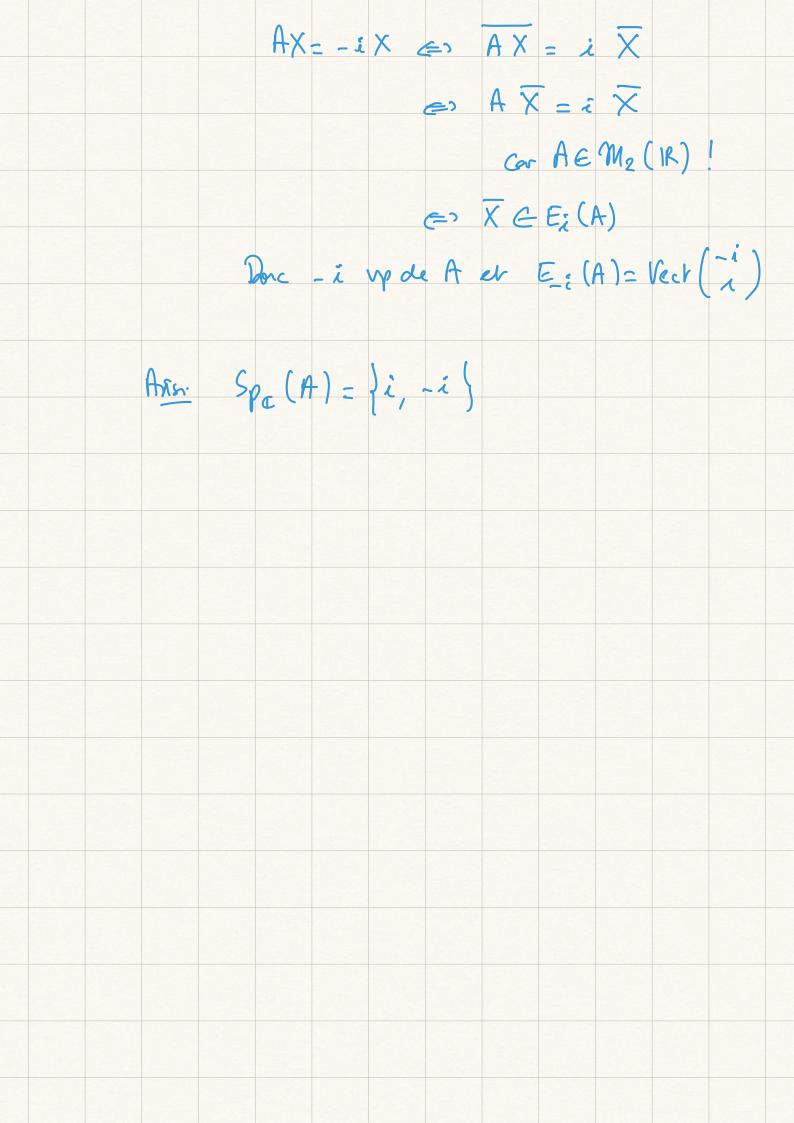
$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times = \lambda \times \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$A \times$$



3 Éléments propres d'une matrice carrée représentant un endomorphisme

3.1 Lien entre matrice et endomorphisme

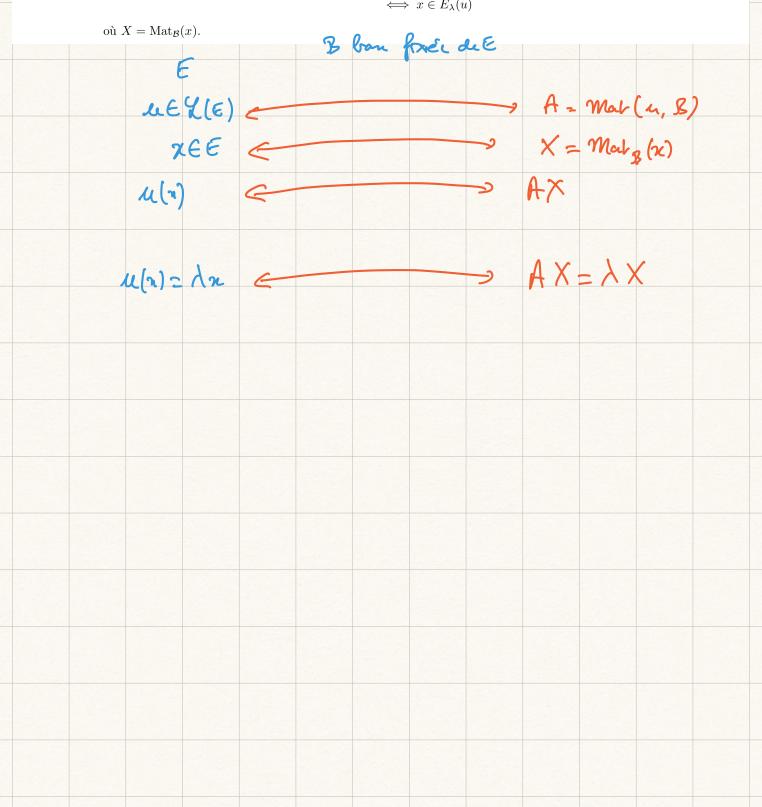
Proposition. Soit E un espace vectoriel de dimension finie n, \mathcal{B} une base de E, $u \in \mathcal{L}(E)$ et $A = \operatorname{Mat}(u, \mathcal{B})$.

- Les valeurs propres de A sont les valeurs propres de u :

$$Sp(A) = Sp(u)$$

• Les vecteurs propres de A sont les matrices des vecteurs propres de u:

$$\begin{split} X \in E_{\lambda}(A) &\iff AX = \lambda X \\ &\iff u(x) = \lambda x \\ &\iff x \in E_{\lambda}(u) \end{split}$$



3.2 Éléments propres et matrices semblables

Proposition. Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables, $P \in GL_n(\mathbb{K})$ telle que $A = PBP^{-1}$.

- Les valeurs propres de A sont les valeurs propres de B :

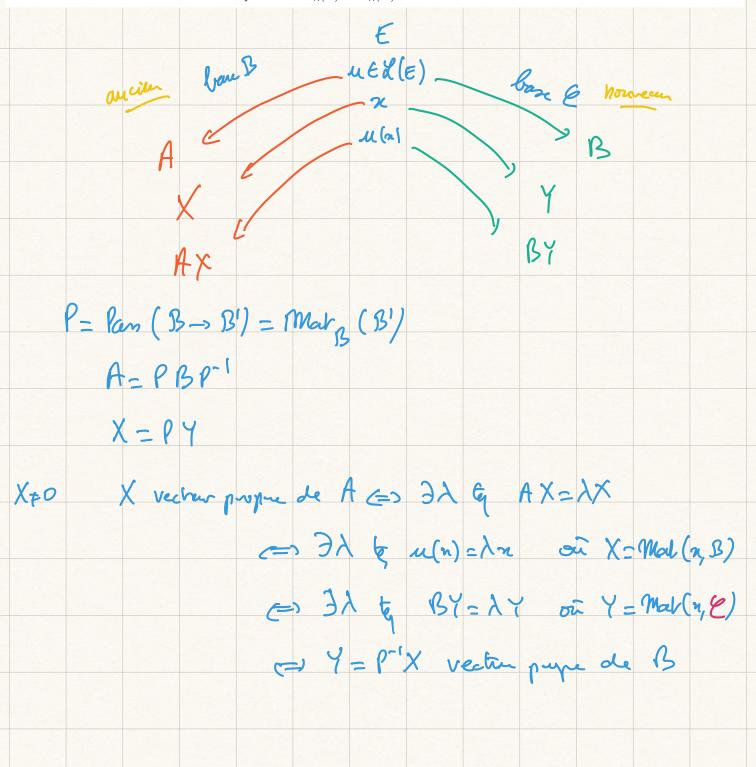
$$Sp(A) = Sp(B)$$

 \bullet Les vecteurs propres de A et les vecteurs propres de B sont liés par la formule de changement de base :

$$X \in E_{\lambda}(A) \iff AX = \lambda X$$

 $\iff PBP^{-1}X = \lambda X$
 $\iff B(P^{-1}X) = \lambda(P^{-1}X)$
 $\iff P^{-1}X \in E_{\lambda}(B)$

 $X \mapsto P^{-1}X$ est un isomorphisme de $E_{\lambda}(A) \to E_{\lambda}(B)$.



Outil connode, par exclusif. Ne par valler lég aux étents papes. Polynôme caractéristique 4 4.1 Polynôme caractéristique d'une matrice $\chi_A = \det(XI_n - A) \in \mathbb{K}[X]$ **Définition.** Pour $A \in \mathcal{M}_n(\mathbb{K})$, on définit : appelé le polynôme caractéristique de A. XA = der (A - XIm) hing. Dan certains orways: **Proposition.** χ_A est de degré n et on connaît a priori quelques coefficients : $\chi_A = \det(XI_n - A) = X^n - \operatorname{tr}(A)X^{n-1} + \dots + (-1)^n \det(A)$ $(X - a_1) - a_{12} - a_{21}$ $(X) = -a_{21} \times -a_{22}$ Car on A triangulaise = (X-an)(X-a22) -- (X-an)

Outil réservé à la din fince.

$$= X^{m} + \left(-a_{11} - a_{22} - - - a_{m}\right) X^{m-1} + - -$$

$$+ \left(-1\right)^{m} a_{11} a_{22} - a_{m}$$

$$= X^{m} - hr(A) X^{m} + - - + \left(-1\right)^{m} d_{11}(A)$$

$$A = \left(h_{1} - A_{m}\right) \quad \text{per change de } M_{m}(1K)$$

$$A = \left(h_{1} - A_{m}\right) \quad \text{per change}$$

$$= det \left(X = A_{1} - A_{1}\right) \quad \times E_{2} - A_{2} \quad \times E_{m} - h_{1}\right)$$

$$= det \left(X = A_{1} - A_{1} \times E_{2} - A_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X \quad det \left(E_{1} \times E_{2} - A_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X \quad det \left(A_{1} \times E_{2} - A_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} - A_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} - A_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} - A_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m} - h_{1}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m}\right)$$

$$= X^{m} det \left(E_{1} \times E_{2} + - X_{m} \times E_{m}\right)$$

	der (E1	Az	En)	/ · · · (C	1	,		
					=	aii				