3 Interlude : le groupe $(\mathbb{Z}/n\mathbb{Z},+)$

Proposition. Pour $n \in \mathbb{N}$, la relation de **congruence modulo** n sur \mathbb{Z} est définie par :

$$a \equiv b \ [n] \iff a - b \in n\mathbb{Z}$$
$$\iff n \mid a - b$$

C'est une relation d'équivalence.

Remarque. Si n = 0, il s'agit simplement de l'égalité. Si n = 1, tous les entiers sont en relation.

Prime: Piflerne: Sold
$$a \in \mathbb{Z}$$
, $a-a=0.$ and $a=a$ [n]

Synthing: Sold $a,b \in \mathbb{Z}$ by $a=b$ [n]

along $\exists k \in \mathbb{Z}$ by $a-b=k.$ and

does $b-a=(-k)$ and

does $b=a$ [n]

Transitive Soil $a,b,c \in \mathbb{Z}$ by $a=b$ [n)

 $b=c$ [m)

 $\exists k,k' \in \mathbb{Z}$ by $a-b=k.$ and

 $b-c=k!.$ and

does $a-c=(k+k').$ and

Por c'est un relation d'équivalue

doc azc [m]

Proposition. Pour $n \ge 2$, il y a exactement n classes d'équivalences :

 $\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$

Définition. On note $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$, appelé « \mathbb{Z} sur $n\mathbb{Z}$ ».

Remarque. On a bien $\operatorname{Card} (\mathbb{Z}/n\mathbb{Z}) = n$.

D regroupe tous les entres cargons à 0 modulo m

{1, 1+m, 1+2n, -- 1-m, 1-2n---}

· Si a E Z, on effectie la dis enclidéere de a par m:

alar a = r [m]

donc a = ~ = {0, 1, ..., m-1}

· Si ou considére deux élèmets de {0,1,.., n-1}

notés x_1, x_2 Ce sont de clanes d'équivalences

der $\exists a_1, a_2 \in X$ to $x_1 = \overline{a_1}$ $x_2 = \overline{a_2}$

Si $n_1 = n_2$ alon $\overline{a_1} = \overline{a_2}$

ie $a_1 \equiv a_2 [n]$

doc an-a2 = 0 [m]

The flee \mathbb{Z} ty $a_n-a_2=kn$ for $a_1,a_2\in\{0,\dots,m-1\}$ for $a_1-a_2\in\{-(m-1),\dots,+(m-1)\}$ Only sail multiple de n

donc $a_n-a_2 \geq 0$ il $a_n = a_2$ Donc les clame d'équivalent $\overline{0}, \overline{1}, \ldots, \overline{n-1}$ Nout $2\overline{a}$ 2 destinctes, donc du noubre de n.

On note {0, 1, ..., m-1} = Z/nZ

Proposition. Pour $n \ge 2$, il existe une unique loi de groupe sur $\mathbb{Z}/n\mathbb{Z}$, encore notée +, pour laquelle l'application $\pi: k \mapsto \overline{k}$ soit un morphisme de groupes, i.e. :

$$\forall a, b \in \mathbb{Z}, \ \overline{a+b} = \overline{a} + \overline{b}$$

De plus, $\operatorname{Ker} \pi = n\mathbb{Z}$.

Remarque. Ainsi, pour additionner deux classes d'équivalences, on additionne deux représentants de ces classes d'équi-

Corollaire. Pour $n \in \mathbb{N}^*$, $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ et $k \in \mathbb{Z}$,

$$k \cdot \overline{a} = \overline{ka}$$

due
$$a'+b' = a+b$$
 [m)
donc $a'+b' = a+b$

Renagne: Ti moylise de goujes. Sous-entered gre (2/2, +) est un groupe. -> + et me los de comp. interne v -> + et anocialin [...) -> + aduet a vente: 0 tre Blaz Bacz & n=a n+0= a+0 = (a+0) $=\overline{\alpha}=\overline{0}+x$ - Fort élèrent adul un squirnique Sot rella. Da El to não 2 + (-a) = a + (-a) = (a + (-a))= 0 ventre = (-a)+n dos a adul u synhør, qui et (-a). Asso: $-\overline{a} = \overline{(-a)}$ -> + est comenchatre-

Ti morphire de groupe: benoui!

$$T: Z \longrightarrow Z/_{NZ}$$

$$a \longmapsto a$$

$$T(a+b) = T(a) + T(b)$$

$$(a+b) = a + b$$

Consequence:

$$\forall k \in \mathbb{Z}$$
 $(ka) = k. (a)$

Propriét: Ken II = m Z

TI: Z - 3 Z/MZ

En effet:

(=> a multiple de m

Donc VerTI = m Z

$$= m+1 \qquad \text{or} \quad m+1 = 1 \quad [m]$$

Proposition. Muni de cette loi, $\left(\mathbb{Z}/n\mathbb{Z},+\right)$ est donc bien un groupe commutatif.

Exemple. Construire la table de la loi + dans $\mathbb{Z}/4\mathbb{Z}$.

7	0	7	2	3				
D	5	7	2	3				
1	7	2	3	0		_		
7	2	3	0	1	2+3=9	1	car 5	E1 [47
3	3	0	7	2				

Générateurs de $\mathbb{Z}/n\mathbb{Z}$.

Soit n entier $\geqslant 2$. Sont équivalentes :

- (i) $\mathbb{Z}/n\mathbb{Z} = \langle \overline{a} \rangle$
- (ii) il existe $k \in \mathbb{N}$ tel que $\overline{ka} = 1$

(iii) $a \wedge n = 1$

Remarque. Ainsi, $(\mathbb{Z}/n\mathbb{Z}, +)$ est engendré par chaque \overline{k} , où $k \in \{0, \dots, n-1\}$ est premier avec n.

Exemple. Donner la liste des éléments qui engendrent $(\mathbb{Z}/12\mathbb{Z}, +)$.

(ii) => lii)

 $a_{\Lambda} m = 1$ (Bézont)

=> 3kel ty (7velt ty ka-1=vm)

=> alez la = 1 [m]

(=) ka = 1

 $(ii) \Rightarrow (i)$

On syme Fle EZ to lea = 1

Mgre Z/m2 = < a>

Da E 4m2 et 2/m2 groupe.

C Sort x E Z/uZ.

ヨからてられこし

Alen n= b

$$= b \cdot \overline{1}$$

$$= b \cdot \overline{2}$$

$$= b \cdot \overline{2}$$

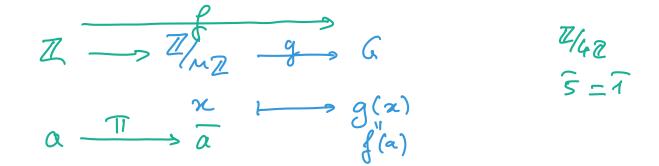
$$= b \cdot \overline{2}$$

$$= c \cdot \overline{2}$$

12= 2.2.3

dor,
$$\mathbb{Z}/12\mathbb{Z} = \langle \overline{1} \rangle$$

= $\langle \overline{5} \rangle$
= $\langle \overline{7} \rangle$



Comment définir un morphisme $\mathbb{Z}/n\mathbb{Z} \to G$.

Soit
$$n$$
 entier $\geqslant 2$, et $\pi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$.

Si G est un groupe et $f:\mathbb{Z}\to G$ un morphisme de groupes, alors les propriétés suivantes sont équivalentes :

(i) il existe un morphisme $g: \mathbb{Z}/n\mathbb{Z} \to G$ tel que $f = g \circ \pi$

$$(ii) \ n\mathbb{Z} \subset \operatorname{Ker} f$$

femarque. Ainsi, pour définir un morphisme de groupe $\mathbb{Z}/n\mathbb{Z} \to G$, on définit un morphisme de groupe $\mathbb{Z} \to G$ dont le noyau contient $n\mathbb{Z}$, et on « passe au quotient ».

Proposition. Les groupes $(\mathbb{Z}/n\mathbb{Z},+)$ et (\mathbb{U}_n,\times) sont isomorphes.

doc a creef.

El Suppress m2 ckeng. Mare 3g: Z/m2 - a mayline to fagoti menter une exolènce trong! g: 4nz - 6 x m f(a) où a=n Justifier que quest bien défense: Si n= a = b, st-ce or f(a)=f(b)? ā= 5 donc a-b = 0 [m]

donc | (b) - (b) = (a - b) = (b -

get un maylin de gropes

Sort $x, y \in \mathbb{Z}(n_{\mathbb{Z}}, a, b \in \mathbb{Z})$ to $y = \overline{b}$ $g(x+y) = g(\overline{a}+\overline{b})$

$$= g(\overline{a+b})$$

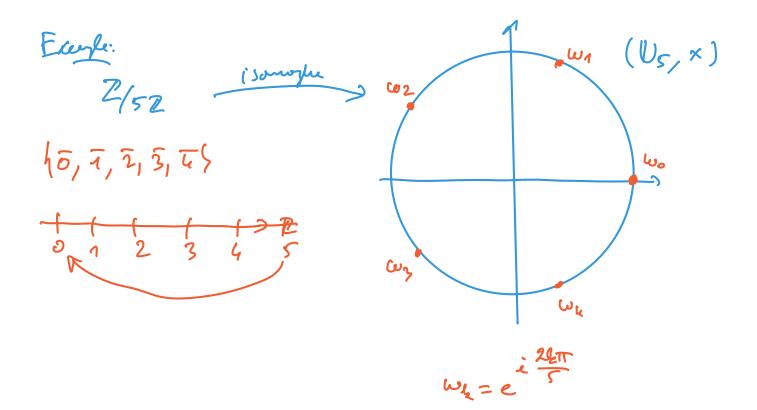
$$= f(a+b)$$

$$= f(a) + f(b) \quad \text{Car f moyhnin}$$

$$= g(u) + g(g)$$

Ben ou ...

$$gott(a) = g(\bar{a}) = f(a)$$



Preuve:

Chromet défini un isomorphie entré $(U_{n,x})$

brown:
$$f: (\mathbb{Z}_{j+1}) \longrightarrow (\mathbb{D}_{n_j} \times)$$
 $k \mapsto \infty$
 $k \mapsto \infty$

donc g injection.