Pour lundi 7h, un exercice à rédiger parmi :

530.16, 530.17 ou 530.24(*)

MPI*MPI

Compléments sur les groupes

2 Sous-groupe engendré par une partie

<u>Proposition.</u> Une intersection de sous-groupes est un sous-groupe : si $(H_i)_{i\in I}$ une famille de sous-groupes de (G,*), alors $\bigcap_{i\in I} H_i$ est un sous-groupe de G.

<u>Définition</u>. Soit (G, *) un groupe et A une partie de G. On appelle sous-groupe engendré par A le plus petit sous-groupe H de (G, *) qui contient A.

Remarque. On note $\langle A \rangle$ le sous-groupe engendré par A, mais cette notation n'est pas dans le programme officiel.

Remarque. La définition signifie que H est le sous-groupe de (G,*) engendré par A si et seulement si :

- H est un sous-groupe de (G,*)
- $A \subset H$
- Pour tout sous-groupe K de (G,*), $A \subset K \implies H \subset K$

Proposition. Avec les notations précédentes :

$$\langle A \rangle = \bigcap_{A \subset H} H$$
H sous-groupe de G

Description du sous-groupe engendré par A. Soit G un groupe noté multiplicativement. $\langle A \rangle$ est l'ensemble des éléments de G qui s'écrivent sous la forme :

$$a_1^{\varepsilon_1} \dots a_n^{\varepsilon_n}$$

où
$$n \in \mathbb{N}, a_1, \ldots, a_n \in A, \varepsilon_1, \ldots, \varepsilon_n = \pm 1.$$

 $\label{eq:Remarque.} \begin{tabular}{ll} \hline \textbf{Remarque.} & Lorsque G est commutatif et noté additivement, le sous-groupe engendré par A est l'ensemble des éléments qui s'écrivent sous la forme : \\ \hline \end{tabular}$

$$k_1a_1 + \cdots + k_pa_p$$

où $p \in \mathbb{N}$, $a_1, \ldots, a_p \in A$ sont distincts, et $k_1, \ldots, k_p \in \mathbb{Z}$. Ce ne sont pas tout à fait des combinaisons linéaires, puisque les «scalaires» sont ici entiers.

Définition.	La partie A de $(G,*)$ est dite génératrice de G lorsque le sous-groupe de $(G,*)$ engeneration	dré par A
$\overline{\text{est }G}$.		

Proposition. Les sous-groupes de $\mathbb Z$ sont les $a\mathbb Z=\langle a\rangle,$ où $a\in\mathbb N.$