

Exemple. On considère la suite de fonctions $(f_n)_n$ définie par :

$$f_n(x) = \frac{nx^2 e^{-nx}}{1 - e^{-x^2}}$$

- 1. Déterminer la limite de f_n en 0.
- 2. Étudier la convergence simple de $(f_n)_n$ sur \mathbb{R}_+^* .
- 3. Utiliser le théorème de la double limite pour montrer qu'il n'y a pas convergence uniforme sur \mathbb{R}_+^* .
- 4. Étudier la convergence uniforme de $(f_n)_n$ sur tout $[a, +\infty[, a > 0.$

7 Dérivation

7.1 Limite d'une suite de fonctions de classe C^1

Théorème de dérivabilité de la limite d'une suite de fonctions.

Soit $(f_n)_n$ une suite de fonctions définies sur I intervalle.

Si:

- pour tout n, f_n est de classe C^1 sur I,
- $(f_n)_n$ converge simplement sur I vers f,
- la suite des fonctions dérivées $(f'_n)_n$ converge uniformément sur I vers une fonction g,

alors:

- f est de classe C^1 sur I,
- \circ f'=g.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\frac{\mathrm{d}}{\mathrm{d}x} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- La convergence uniforme de $(f_n)_n$ n'entraı̂ne pas la dérivabilité de la limite.
- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I de $(f'_n)_n$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.

Exemple. Étudier la convergence et la dérivabilité de la limite de la suite de fonctions définies par :

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

7.2 Extension aux fonctions de classe C^k

Théorème.

Soit $(f_n)_n$ une suite de fonctions définie sur I intervalle, et $k \in \mathbb{N}^*$.

- pour tout n, f_n est de classe C^k sur I,
- pour tout $0 \le j \le k-1$, $(f_n^{(j)})_n$ converge simplement sur I vers une fonction g_j ,
- la suite $(f_n^{(k)})_n$ converge uniformément sur I vers une fonction g_k ,

alors:

- o la limite simple g_0 de $(f_n)_n$ est de classe \mathcal{C}^k sur I
- pour tout $1 \leqslant j \leqslant k$, $g_0^{(j)} = g_j$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}^k}{\mathrm{d}x^k} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\frac{\mathrm{d}^k}{\mathrm{d}x^k} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I des $(f_n^{(k)})_n$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.
- Pour montrer que g_0 est de classe C^{∞} , on montre la convergence simple de $(f_n)_n$ et la convergence uniforme de toutes les $(f_n^{(j)})_n$, pour $j \ge 1$.

8 Théorèmes d'approximation uniforme

8.1 Approximation par des fonctions en escalier

Théorème.

Toute fonction continue (par morceaux) sur un segment est limite uniforme sur ce segment d'une suite de fonctions en escalier.

8.2 Approximation par des fonctions polynomiales

Théorème de Weierstrass.

Toute fonction continue sur un segment est limite uniforme sur ce segment d'une suite de fonctions polynomiales.

Remarque. On parle ici de fonctions numériques (à valeurs dans \mathbb{R} ou \mathbb{C}). L'hypothèse de continuité est importante, celle de segment aussi.