

Problème 1

On étudie la nature (convergence ou divergence) de la série $\sum_{n\geqslant 2}\frac{\ln n}{n}z^n$ suivant les valeurs du nombre complexe z.

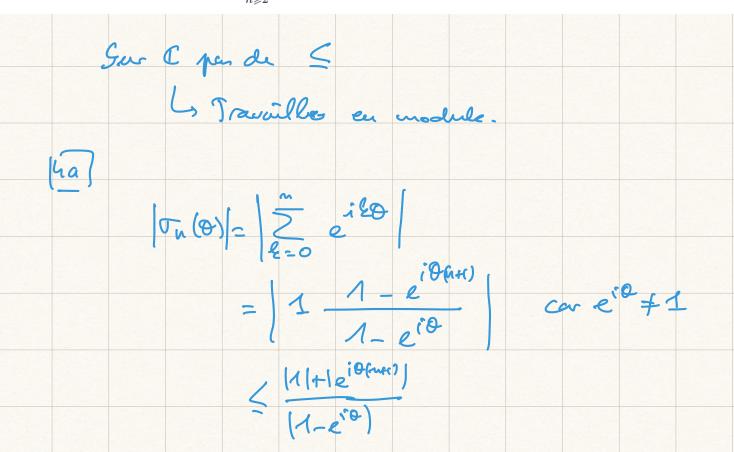
- 1 On suppose $z \in \mathbb{C}$ et $|z| \neq 1$. Étudier la nature de la série $\sum_{n \geqslant 2} \frac{\ln n}{n} z^n$.
- 2 On suppose z=1. Étudier la nature de la série $\sum_{n\geq 2} \frac{\ln n}{n} z^n$.
- 3 On suppose z=-1. Étudier la nature de la série $\sum_{n\geqslant 2}\frac{\ln n}{n}z^n$.
- On suppose dans toute cette question $|z|=1, z \neq 1$. On fixe un réel θ tel que $z=e^{\mathrm{i}\theta}$, et on définit, pour tout $n\geqslant 1$:

$$v_n = \frac{\ln n}{n}$$
 et $\sigma_n(\theta) = \sum_{k=0}^n e^{ik\theta}$

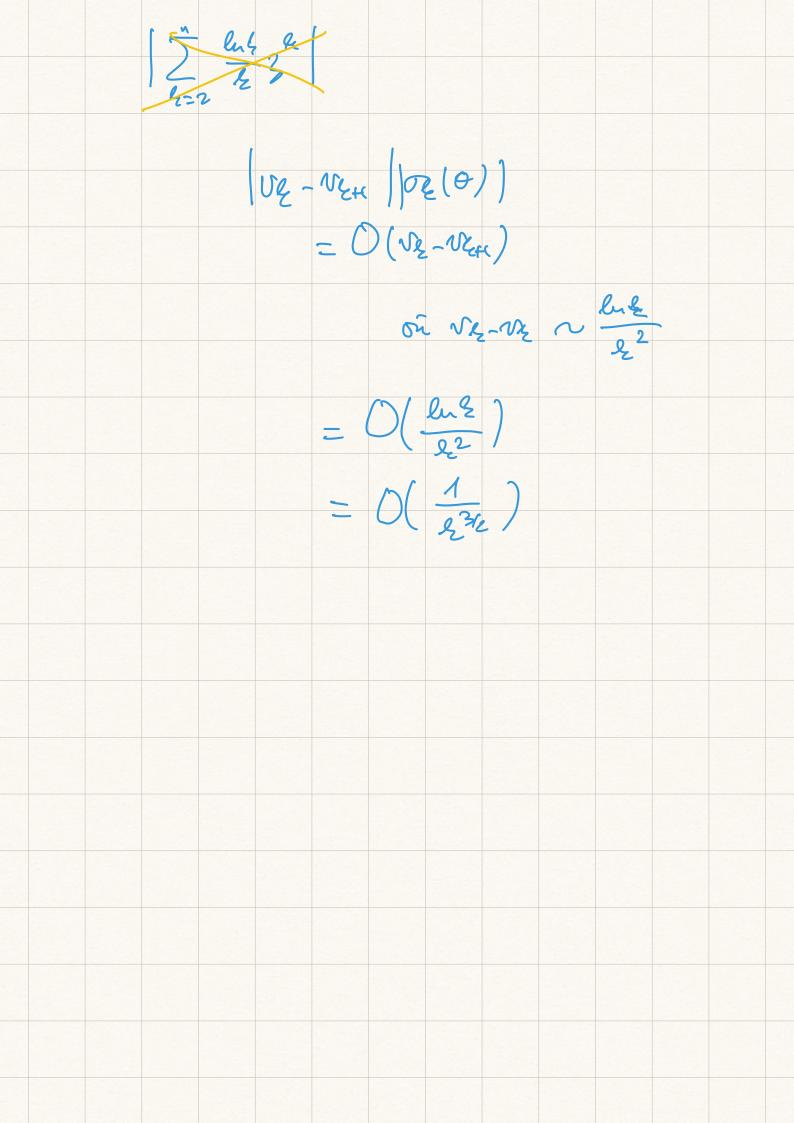
- (a) Montrer que la suite $(\sigma_n(\theta))_{n\geqslant 1}$ est bornée.
- (b) Montrer que, pour tout $n \ge 2$,

$$\sum_{k=2}^n \frac{\ln k}{k} z^k = \sum_{k=2}^{n-1} (v_k - v_{k+1}) \sigma_k(\theta) - v_2 \sigma_1(\theta) + v_n \sigma_n(\theta)$$

(c) En déduire que la série $\sum_{n\geq 2} \frac{\ln n}{n} z^n$ converge.



- (ndip de n De la rèc e Bef... On part du mentre de choite --- $\int_{1}^{2} \frac{1}{t} \sin t \, dt = \left[\frac{1}{t} \cdot \cos t \right]_{2}^{2} - \int_{1}^{2} \frac{1}{t^{2}} (-) \cosh t \, dt$ $\int_{1}^{2} \frac{1}{t} \sin t \, dt = \cos 1 - \cos 2 - \int_{1}^{2} \frac{\cosh t}{t^{2}} \, dt$ $\int_{1}^{2} \frac{1}{t} \sin t \, dt = \cos 1 - \cos 2 - \int_{1}^{2} \frac{\cosh t}{t^{2}} \, dt$ V2 Exprer 12 1 sint de ci lande de 12 cat de \frac{1}{2} \left\{ \text{luk} \ \frac{1}{2} \ \frac{1} \ \frac{1}{2} \ = = (Ng - Nzer) oz $\sum_{k=2}^{n} \frac{\ln k}{k} z^{k} = \sum_{k=2}^{n-1} (v_{k} - v_{k+1}) \sigma_{k}(\theta) - v_{2} \sigma_{1}(\theta) + v_{n} \sigma_{n}(\theta)$



Problème 2

Pour éviter toute confusion, on attire l'attention des candidats sur la typographie, dans le sujet, des relations de comparaison usuelles : O (« grand O », relation de domination) et o (« petit o », relation de négligeabilité).

On rappelle l'inégalité de Taylor-Lagrange : si f est une fonction de classe C^n sur [a, b], à valeurs réelles ou complexes, alors

$$\left| f(b) - \sum_{k=0}^{n-1} \frac{(b-a)^k}{k!} f^{(k)}(a) \right| \le \frac{(b-a)^n}{n!} \sup_{[a,b]} \left(|f^{(n)}| \right)$$

Partie 1. Convergence des séries de Riemann

Soit f une fonction réelle, définie continue et décroissante sur $[a, +\infty[$, où $a \in \mathbb{R}$. Montrer, que pour tout entier $k \in [a+1, +\infty[$, on a

$$\int_{k}^{k+1} f(x) \, \mathrm{d}x \leqslant f(k) \leqslant \int_{k-1}^{k} f(x) \, \mathrm{d}x$$

2 En déduire la nature de la série de Riemann $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$ selon la valeur de $\alpha\in\mathbb{R}$.

En cas de convergence, on pose
$$S(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$
.

Pour tout réel $\alpha > 1$, montrer que $1 \leqslant S(\alpha) \leqslant 1 + \frac{1}{\alpha - 1}$.

Partie 2. Étude asymptotique du reste

Dans la suite du problème, pour tout réel $\alpha>1$ et tout $n\in\mathbb{N}^*,$ on pose :

$$R_n(\alpha) = \sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}}$$

4 En utilisant l'encadrement montré au début du problème, montrer que :

$$R_n(\alpha) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} + O\left(\frac{1}{n^{\alpha}}\right)$$

5 Soit f la fonction définie sur \mathbb{R}_+^* par : $f(x) = \frac{1}{(1-\alpha)x^{\alpha-1}}$.

En appliquant par exemple à f une inégalité de Taylor-Lagrange, montrer que, pour tout $k \in \mathbb{N}^*$:

$$f(k+1) - f(k) = \frac{1}{k^{\alpha}} - \frac{\alpha}{2} \frac{1}{k^{\alpha+1}} + A_k$$

où A_k est un réel vérifiant $|A_k| \leqslant \frac{\alpha(\alpha+1)}{6k^{\alpha+2}}$.

6 En déduire que :

$$R_n(\alpha) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} + \frac{1}{2n^{\alpha}} + O\left(\frac{1}{n^{\alpha + 1}}\right)$$

 $\forall x \in [\ell-1, \ell], \quad f(\ell) \leq f(n)$ $\int_{\xi-1}^{\xi} f(\xi) du \leq \int_{\xi-1}^{\xi} f(n) du$ [2] The de comme l'intigrale Technique de com serie / intégrale $\frac{S_i}{N} \propto -1$ $\sum \frac{1}{M}$ (dx?)On travaille sur le sous pentielle $\int_{n}^{\infty} \frac{1}{n} dn \leq \sum_{k=1}^{\infty} \frac{1}{k}$ donc lu (11+1) \leq \frac{2}{2} \frac{1}{2} S: x>2 \(\frac{1}{m} \) \(\text{cu ?} \) On travaille su les sous jurielles $\int_{1}^{\infty} \frac{1}{t^{\kappa}} dt \leq \sum_{k=1}^{\infty} \frac{1}{t^{\kappa}} \leq 1 + \int_{1}^{\infty} \frac{1}{t^{\kappa}} dt$

donc per encadron, 2 1 cu $\frac{1}{2^{-1}} \left\{ \frac{1}{2^{\alpha}} \leq 1 + \frac{1}{2^{-1}} - \frac{1}{2^{\alpha-1}} \right\}$ $\leq 1 + \frac{1}{\alpha - 1}$ indep de u donc ($\frac{1}{2}$ $\frac{1}{2}$ (car les 1/2 sont >0) der conerge. Por panage à la limite (ve fourit par de av) $\sum_{k=1}^{+\infty} \frac{1}{2^k} \leq 1 + \frac{1}{K-1}$

On rappelle l'inégalité de Taylor-Lagrange : si f est une fonction de classe \mathcal{C}^n sur [a,b], à valeurs réelles ou complexes, alors

 $\left| f(b) - \sum_{k=0}^{n-1} \frac{(b-a)^k}{k!} f^{(k)}(a) \right| \le \frac{(b-a)^n}{n!} \sup_{[a,b]} \left(f^{(n)} \right| \right)$

maj rad de (f(") On applique l'mez de Taylor-lagrage am. of 63 à f: n --. a Cardu 3 entre & et &+1 $g'(u) = g''(x) = g'''(x) = \frac{\alpha(x+1)}{\alpha^{\alpha+2}}$ ∀n (g'''(n)) ⊆ d (d+1) indép der (f(2+1))-(g(2) + 1 g'(2) + 1 g'(2)) < 1 × (A+1) 2! g'(2)) < 3! & d+2 Arring f(2+1) = f(2) + f'(2) + 1 f'(2) + Az or $|A_2| \leq \frac{d(x+1)}{6 e^{d+2}}$

Problème 3

Soit $(a_n)_{n\geqslant 0}$ une suite de nombres complexes. On dit qu'elle est C-convergente si la suite $(m_n)_{n\geqslant 0}$ définie par

$$\forall n \geqslant 0 \qquad m_n = \frac{a_0 + a_1 + \dots + a_n}{n+1}$$

est convergente et on appelle alors C-limite de $(a_n)_{n\geqslant 0}$ la limite de la suite $(m_n)_{n\geqslant 0}$.

 $\fbox{1}$ Montrer que toute suite convergente est C-convergente. Donner un exemple de suite C-convergente mais non convergente.

- 2 Exprimer a_n à l'aide de m_n et m_{n-1} . En déduire que si la suite $(a_n)_{n\geqslant 0}$ est C-convergente alors $\lim_{n\to +\infty} \frac{a_n}{n}=0$.
- 3 On définit, si $\alpha \in]0,1[$, $a_n=(-1)^nn^\alpha$. On pose $b_n=a_n+a_{n+1}$. Montrer que la suite (b_n) converge vers 0; exprimer $\frac{1}{n+1}\sum_{k=0}^n b_k$ à l'aide de m_n , a_0 et a_{n+1} puis montrer que (a_n) est C-convergente.
- 4 (a) Pour tout entier $n \ge 0$ et tout nombre complexe z, on définit

$$S_n(z) = \sum_{k=0}^n z^k$$

et on pose :
$$\sigma_n(z) = \frac{S_0(z) + S_1(z) + \dots + S_n(z)}{n+1}$$
.

Déterminer l'ensemble F des nombres complexes de module 1 pour lesquels la suite $(S_n(z))_{n\geqslant 0}$ est C-convergente et déterminer la limite de la suite $(\sigma_n(z))_{n\geqslant 0}$.

(b) Soit $\alpha \in]0,1[$, $\lambda \in \mathbb{R}.$ Pour tout entier $n\geqslant 0$ et tout nombre complexe z, on définit

$$T_n(z) = \sum_{k=0}^{n} (1 + \alpha e^{ik\lambda}) z^k$$

et on pose :
$$\tau_n(z) = \frac{T_0(z) + T_1(z) + \dots + T_n(z)}{n+1}$$
.

Déterminer l'ensemble G des nombres complexes de module 1 pour lesquels la suite $(T_n(z))_{n\geqslant 0}$ est C-convergente et déterminer la limite de la suite $(\tau_n(z))_{n\geqslant 0}$.

Dans la suite, si $\lambda \in \mathbb{C}$, on note $e_{\lambda} : t \to e^{i\lambda t}$.

5 On pose, pour tout entier nature $N \ge 0$,

$$K_N = \sum_{j=-N}^{N} \left(1 - \frac{|j|}{N+1}\right) e_j$$

(a) Montrer que, si $N \ge 1$,

$$K_N(t) = 1 + \sum_{i=1}^{N} \frac{2j}{N+1} \cos((N+1-j)t)$$

(b) Montrer que pour tout
$$t \in \mathbb{R} \setminus 2\pi \mathbb{Z}$$
:
$$\sum_{k=0}^{N} e^{i\left(\frac{N}{2}-k\right)t} = \frac{\sin\left(\frac{N+1}{2}t\right)}{\sin\left(\frac{t}{2}\right)}$$
puis que : $K_N(t) = \frac{1}{N+1} \left(\frac{\sin\left(\frac{N+1}{2}t\right)}{\sin\left(\frac{t}{2}\right)}\right)^2$. Son générale considère dorénavant un entier $n \ge 1$ des nombres réels λ .

On considère dorénavant un entier $n \ge 1$, des nombres réels $\lambda_1, \ldots, \lambda_n, \lambda_{n+1}$ linéairement indépendants sur \mathbb{Q} (c'est-à-dire que la famille $(\lambda_1, \ldots, \lambda_n, \lambda_{n+1})$ est libre dans le \mathbb{Q} -espace vectoriel \mathbb{R}), des nombres réels positifs r_0, \ldots, r_{n+1} et des nombres réels $\alpha_1, \ldots, \alpha_{n+1}$.

Pour j = 1, ..., n + 1 on pose $a_j = r_j e^{i\alpha_j}$ et pour tout $x \in \mathbb{R}$, $f(x) = r_0 + \sum_{i=1}^{n+1} a_j e^{i\lambda_j x}$.

[6] (a) Montrer que, pour tout $\lambda \in \mathbb{R}$, la fonction

$$x \mapsto \frac{1}{2x} \int_{-x}^{x} e_{\lambda}(t) dt$$

admet une limite quand $x \to +\infty$.

(b) Pour tout entier $N \ge 0$, on pose $g_N(x) = \prod_{i=1}^{n+1} K_N(\lambda_p x + \alpha_p)$. Écrire g_N comme combinaison linéaire de fonctions e_{λ} avec λ de la forme

$$\lambda = j_1 \lambda_1 + \dots + j_{n+1} \lambda_{n+1} , \quad j_1, \dots, j_{n+1} \in \{-N, \dots, N\}$$

En déduire que la fonction

$$x \mapsto \frac{1}{2x} \int_{-x}^{x} g_N(t) \mathrm{d}t$$

admet une limite quand $x \to +\infty$, calculer cette limite.

(c) Montrer que la fonction

$$x \mapsto \frac{1}{2x} \int_{-x}^{x} f(t)g_N(t) dt$$

admet une limite quand $x \to +\infty$, et que cette limite vaut $r_0 + \frac{N}{N+1} \sum_{j=1}^{N+1} r_j$.