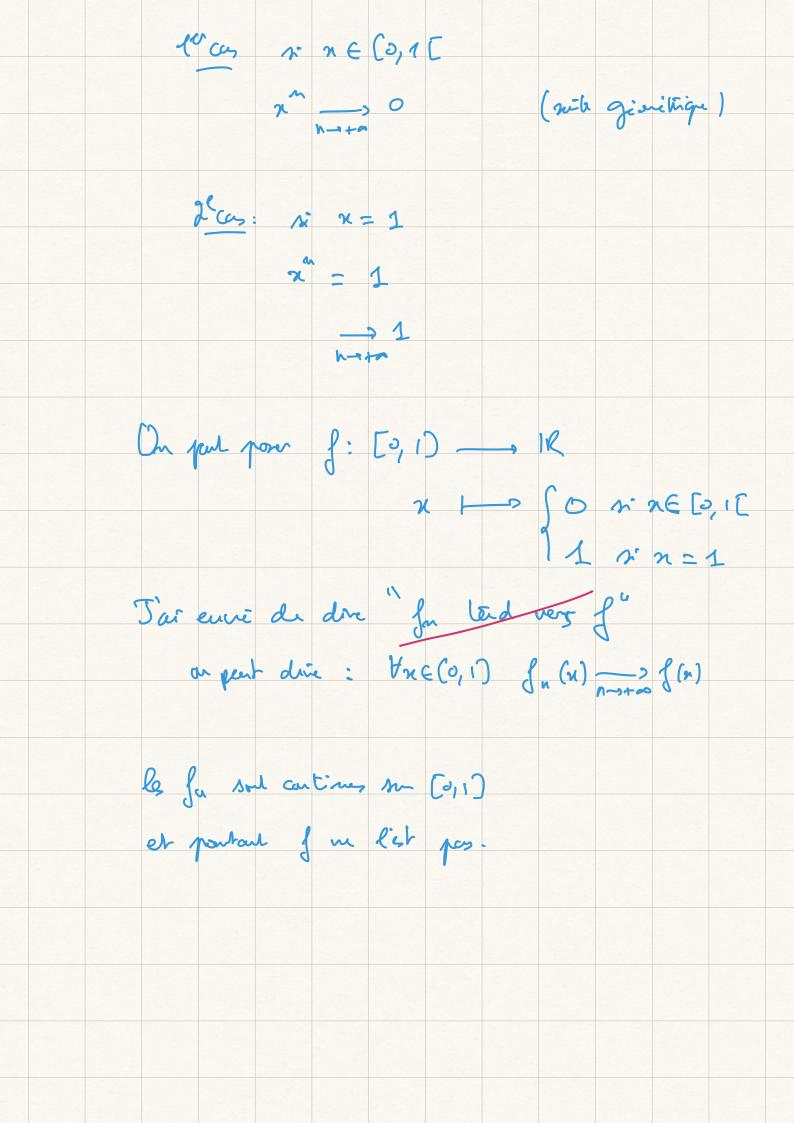
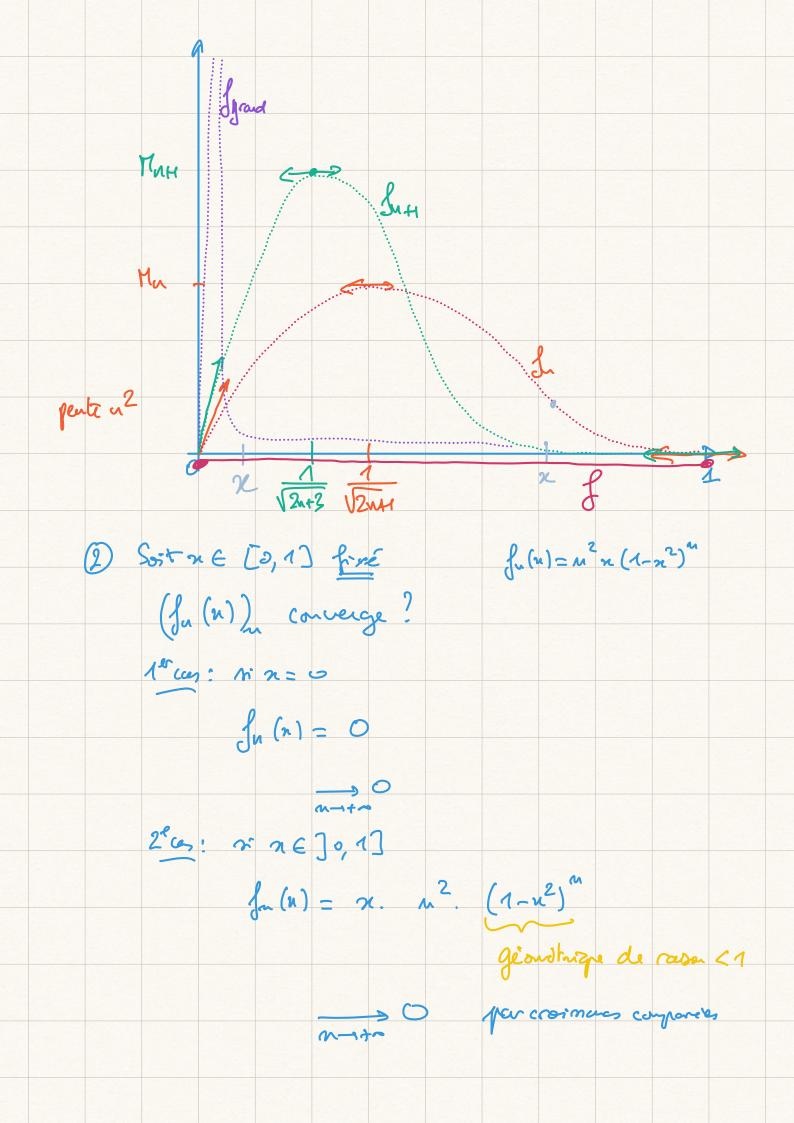

Suites de fonctions numériques

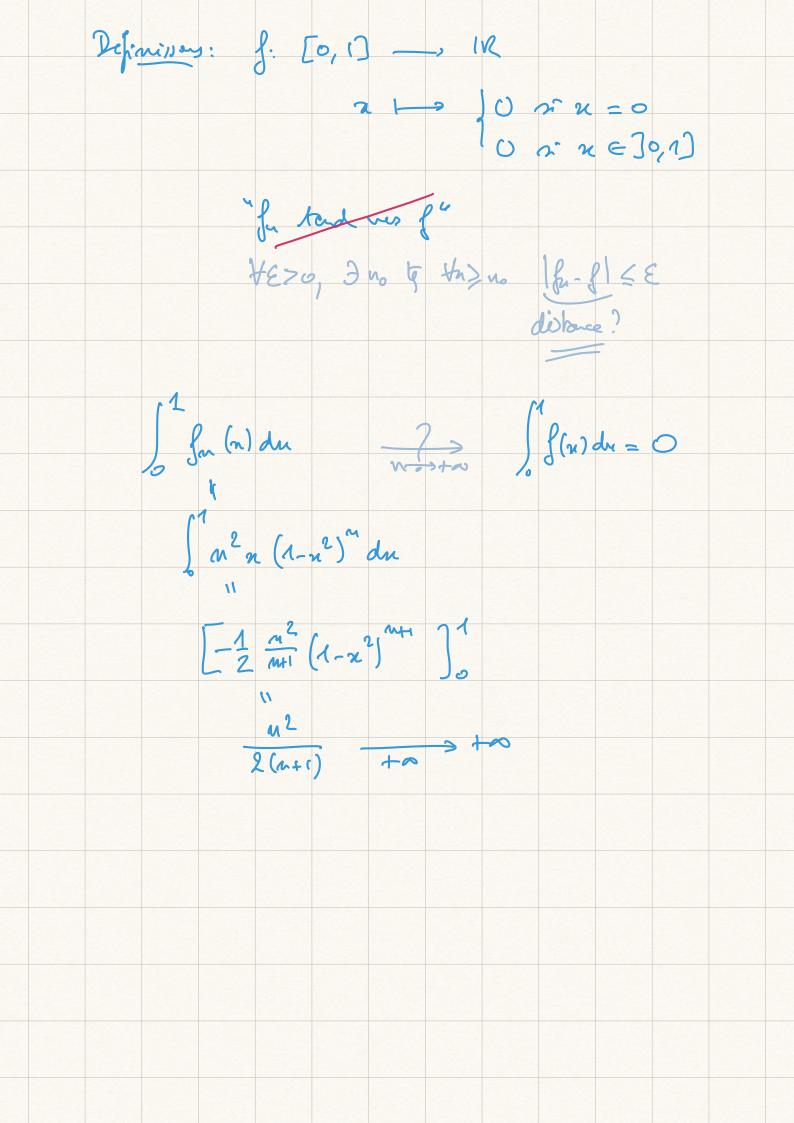

1 Quelques exemples

Exemple. Pour $n \in \mathbb{N}$, on pose :

$$\begin{array}{cccc}
f_n : [0,1] & \to & \mathbb{R} \\
x & \mapsto & x^n
\end{array}$$

- 1. Représenter quelques fonctions f_n .
- 2. Est-ce que $(f_n(x))_n$ admet une limite?
- 3. Continuité?



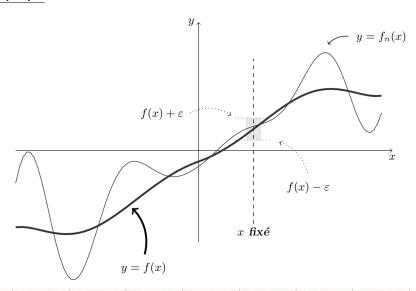

Exemple. Pour $n \in \mathbb{N}$, on pose :

$$f_n: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto n^2 x (1-x^2)^n$

- 1. Représenter quelques fonctions f_n .
- 2. Est-ce que $(f_n(x))_n$ admet une limite?
- 3. Intégrale sur [0,1]?

	0. 11100	graic sur	[0, 1].									
Na	トルシグ	2										
			2 (1-n	·) +	u 2 u .	m · (~	2n). (1-n2	M-1			
	U							m 22				
		z /	u ² (1	-n ²)	m-1 (-	-)(2	(+1) (21 - 1	<u>()</u>	N+7	1	
								V	. 114-1	VZ	- N4-1	
		N	0			-	12nH				1	
		J'u	M2		+		0				0	
		0				<i>></i>	Mm	_				
		Jen	0-	/						1	0	
		مىدر	J.	(1 V2uti)= (n ² . $\sqrt{2}$	1 · (1-2	1)M			
					=	M2	- ex	ip (n	· en(1-12	<u></u>	
						n2 V2u+	- ex	p (m.	(- 1/2 w	+ o	(1))
									n-11 -8-(1)	1 2		
					=	V2n	10		-8-(1)			
						V N	3/2	1				
					N-	74.00		VAR				


	Exemple.	Pour $n \in$	\mathbb{N} , on pos	se:	f_n	$: \mathbb{R} \to x \mapsto$	$\mathbb{R} \frac{\sin(nx)}{\sqrt{n}}$			
	1. Est-	ce que (f_n)	(x) _n adm	net une lim			\sqrt{n}			
	2. Déri	ivées?								

2 Convergence simple

2.1 Définition

Définition. Soit $(f_n)_n$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} et $f: I \to \mathbb{K}$ une fonction. On dit que $(f_n)_n$ converge simplement sur I vers f si et seulement si, pour tout $x \in I$ fixé, la suite numérique $(f_n(x))_n$ converge vers f(x). La fonction f s'appelle alors la **limite simple** de la suite de fonctions $(f_n)_n$.

Interprétation graphique.

Remarque.

- $(f_n)_n$ converge simplement sur I si et seulement s'il existe f telle que $(f_n)_n$ converge simplement vers f.
- Étudier la convergence simple de $(f_n)_n$, c'est étudier la convergence de la suite $(f_n(x))_n$ à x fixé.
- On trouve parfois la notation $f_n \xrightarrow[n \to +\infty]{\text{CS}} f$.
- On peut quantifier la proposition « $(f_n)_n$ converge simplement vers f » :

$$\forall x \in I, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N, \ |f_n(x) - f(x)| \leqslant \varepsilon$$

Dans cette quantification, l'indice N à partir duquel $f_n(x)$ approche f(x) à ε près dépend de x.

	Exemple.	Étudier	la converg	ence simpl	e des suite	es de foncti	ons définie	es par :					
	1. f_n :	$[0,1] \rightarrow$	\mathbb{R} où $f_n(x)$										
			1		<u>,</u> Ş	()	31)—	IR 10	a` n	€ (0	71 E	1	
			Jn	h	7+01			1	ر م. بر	=1			

She Restanting
$$= \begin{cases} \frac{1}{2} & \text{sin } x \leq 1 \\ \frac{1}{2} & \text{sin } x \geq 1 \end{cases}$$

Etade de la converger simple.

Soit $x \geq 0$ fixé.

Let $(x) = 0$

2.2	Propriétés											
	Proposition. Si $B \subset I$ et si la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f sur I , alors $(f_n)_{n \in \mathbb{N}}$ converge simplement vers $f _B$ sur B . Proposition. Si les suites de fonctions $(f_n)_{n \in \mathbb{N}}$ et $(g_n)_{n \in \mathbb{N}}$ convergent simplement vers f et g sur I et si $\lambda, \mu \in \mathbb{K}$, alors la suite de fonctions $(\lambda f_n + \mu g_n)_{n \in \mathbb{N}}$ converge simplement vers $\lambda f + \mu g$ sur I .											