Pour ve :	220.2	220.3.	220.4.

6 Trace d'une matrice

Définition. La trace d'une matrice carrée est la somme de ses coefficients diagonaux :

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

Proposition.

- tr est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.
- Pour A, B telles que AB et BA sont carrées :

$$tr(AB) = tr(BA)$$

Corollaire. Deux matrices semblables ont la même trace.

<u>Définition</u>. Soit E un espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. On appelle **trace de** u la trace de toute matrice représentant u.

Proposition. tr est une forme linéaire sur $\mathcal{L}(E)$ vérifiant, pour tout $u, v \in \mathcal{L}(E)$:

$$\operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u)$$

br:
$$M_{\alpha}(W) = W$$

the limitation is

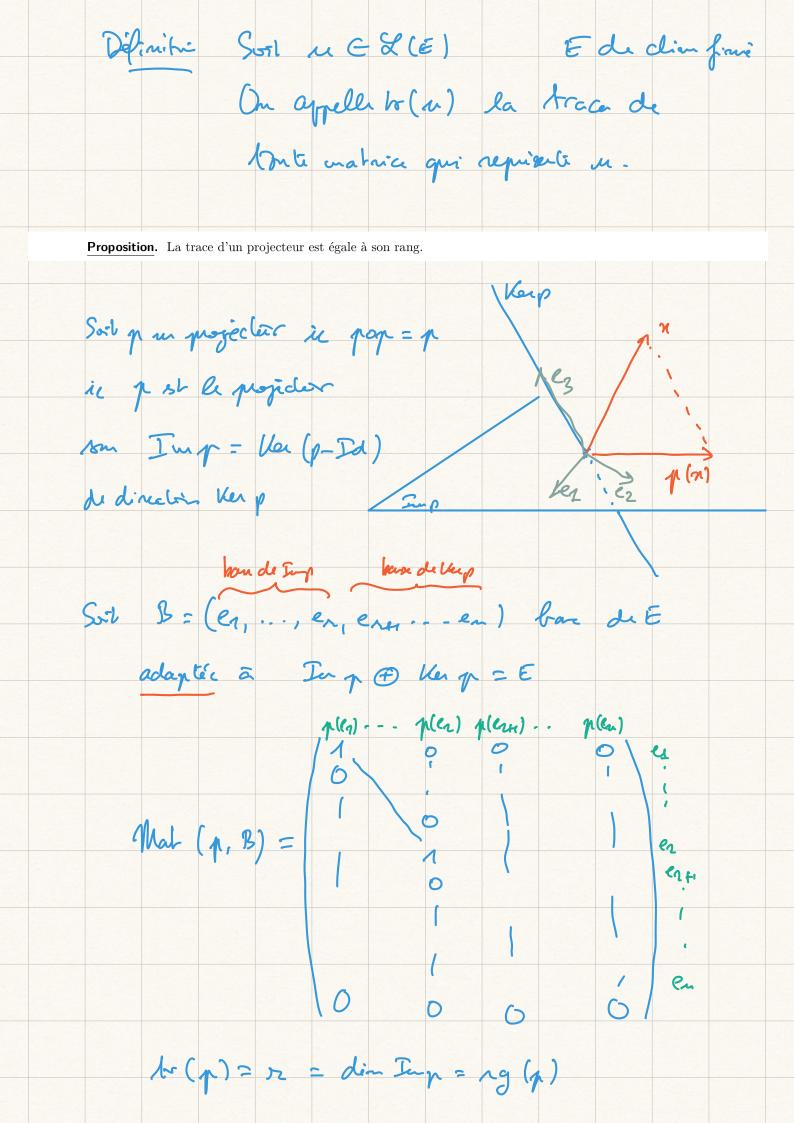
$$\frac{1}{1} = \sum_{i=1}^{n} \lambda [A + \mu B]_{ii} + \mu [B]_{ii} \text{ for diff descends}$$

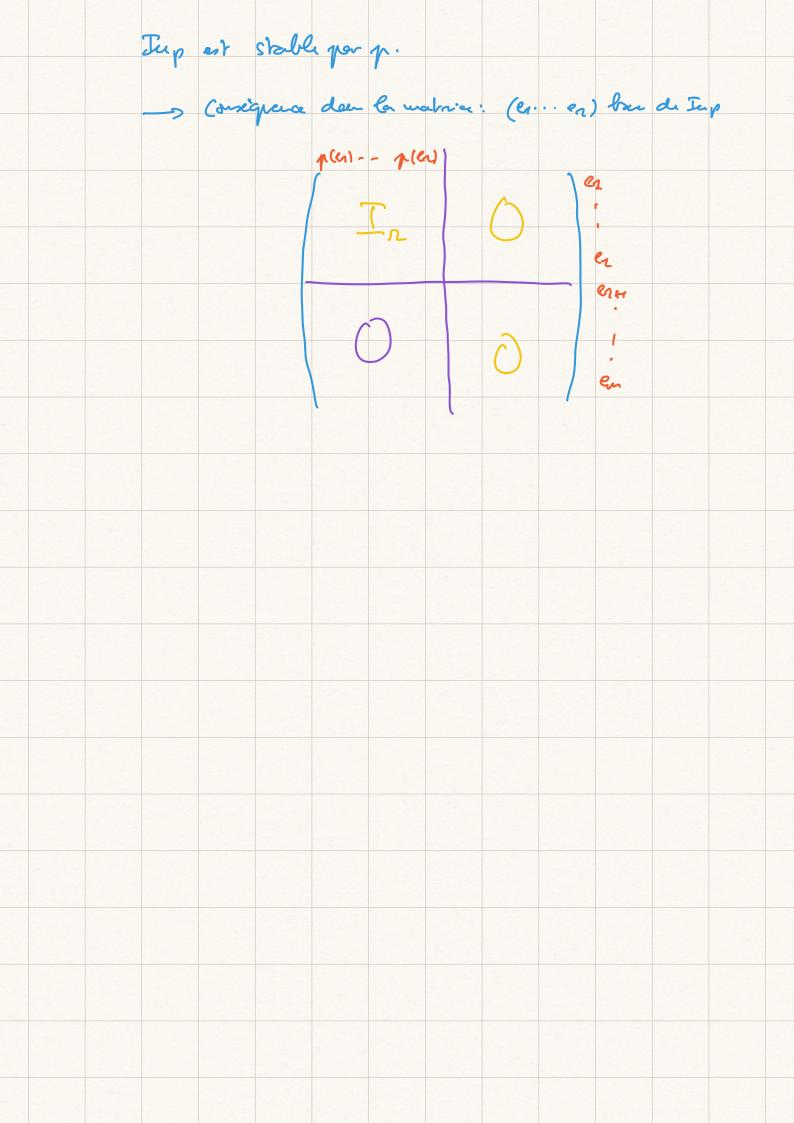
$$= \lambda \text{ the } (A) + \mu \text{ for } (B)$$

elle if was walted the $(T_{\alpha}) = br \begin{pmatrix} 1 & (b) \\ (b) & 1 \end{pmatrix}$

$$= M$$
dian then to $= m^2 - 1$

· Mgre (c (AB) = hr (BA). Lr (AB) = [AB]ii per def debr. = \(\bigcirc \bigcir = \(\sum_{\ell} \) \(\lambda = [BA]4R = Sr(BA) tr (AB) = hr (BA) to (ABC)] Ar (BAC) br ((AB)) = M (C (AB)) = hr (B) A) Carollain. Si A, B soublally, br (A)= br (B) Preux: 3PEGLa(IK) 15 A=PBP" done to (A) = to ((PB)P-1) = lor (P-1 PB) = hr (B)





7 Sous-espaces stables

7.1 Sous-espaces stables par un endomorphisme

Définition. Soit F un sous-espace vectoriel de E, et $u \in \mathcal{L}(E)$. On dit que F est stable par u si et seulement si $\forall x \in F$, $u(x) \in F$.

Remarque. On peut écrire $u(F) \subset F$, en utilisant la notion d'image directe d'un ensemble par une application. L'intérêt de cette notion vient surtout du fait que l'on peut alors donner la définition suivante :

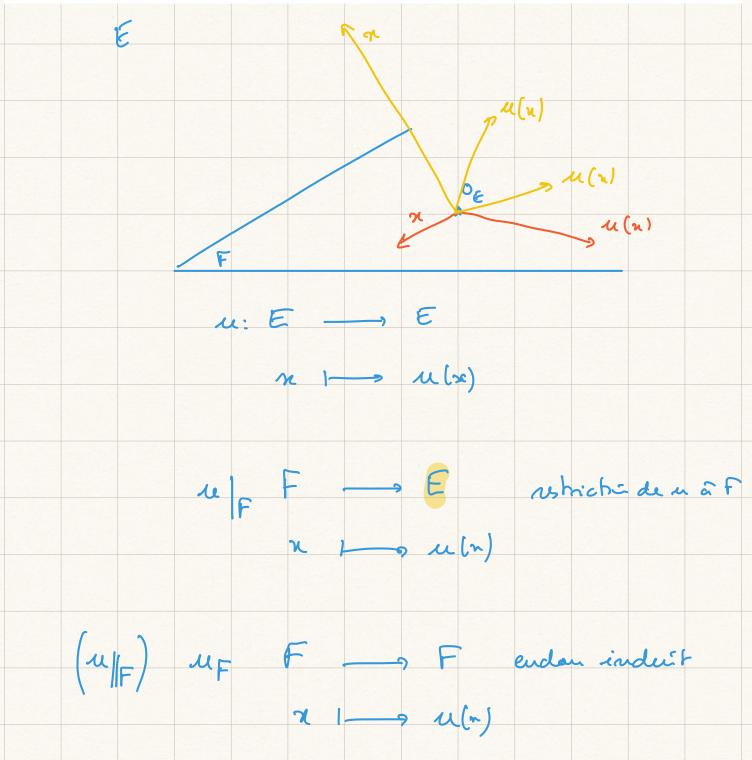
Définition. Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E stable par u. On peut définir :

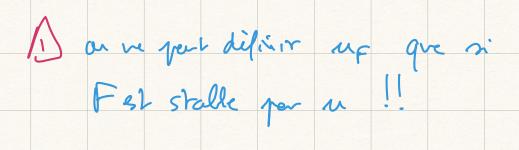
$$\begin{array}{ccc} u_F : F & \to & F \\ x & \mapsto & u(x) \end{array}$$

qui en un endomorphisme de F, appelé endomorphisme induit.

Remarque. Ce n'est pas exactement la restriction de u à F, puisque le but aussi est réduit à F.

Proposition. Si F et G sont deux sous-espaces vectoriels de E stables par u, alors F+G et $F\cap G$ sont aussi stables par u.





Théorème.

Soit u et v deux endomorphismes de E qui commutent. Alors $\operatorname{Ker} u$ et $\operatorname{Im} u$ sont stables par v.

Corollaire. Soit u et v deux endomorphismes de E qui commutent. Alors pour $\lambda \in \mathbb{K}$, $\operatorname{Ker}(u-\lambda \operatorname{Id})$ et $\operatorname{Im}(u-\lambda \operatorname{Id})$ sont stables par v.

	U: E→E V: E→E
Mgre Ver u stalle par er	
Soit n Eller ne Mare vo (n') E ller in
u(v(n)) = uov(n)	n)
= von (
= v (u(n	11)
= v(0)	can no Kenn
20	
donc her u skolle par.	u: E→ E
Mgre Inn stable par	u: E→ E v: E→ E
Soil y E Imm ie Fre	
O	
	r(y) = u (qqch)
v(y) = v(u(n))	
=u(v(n))	car nov=vou
E Inner	
C Jun In	

7.2 Stabilité et matrices par blocs **Proposition.** Soit E un espace vectoriel de dimension n, F un sous-espace vectoriel de dimension p. Soit $\overline{\mathcal{B}} = (e_1, \dots, e_p, e_{p+1}, \dots, e_n)$ une base de E adaptée à F. Soit enfin $u \in \mathcal{L}(E)$. On a la caractérisation suivante: F est stable par u si et seulement si la matrice de u dans $\mathcal B$ est triangulaire supérieure par blocs : $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ où $A \in \mathcal{M}_p(\mathbb{K})$ est la matrice de l'endormophisme induit u_F . (en... ep) bande F u(e1) - u(e/) F stable par as Mal (up, (en. ep))

Proposition. Soit E un espace vectoriel de dimension finie, F_1, \ldots, F_p des sous-espaces vectoriels tels que $E = \bigoplus_{i=1}^{p} F_i$. Soit $u \in \mathcal{L}(E)$. Les F_i sont tous stables par u si et seulement si la matrice de u dans une base $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_p)$ adaptée à

la somme directe est diagonale par blocs :

$$\begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_p \end{pmatrix}$$

où $A_i \in \mathcal{M}_{n_i}(\mathbb{K})$ est la matrice de l'endomorphisme induit u_{F_i} .

Corollaire. Soit E un espace de dimension finie n, de base $\mathcal{B} = (e_1, \dots, e_n)$. Soit $u \in \mathcal{L}(E)$ un endomorphisme laissant stable les n droites vectorielles $F_i = \text{Vect}(e_i)$. Alors, la matrice de u dans la base \mathcal{B} est diagonale :

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

$\begin{pmatrix} 0 & \cdots & 0 & \lambda_n \end{pmatrix}$												
	où cl	haque $\lambda_i \in$	K.									

8	Annexes								
.1	Rappel : opérations élémentaires sur les lignes et les colonnes								
			V						
8.2	Dannel L Hang								
0.2	Rappel : rang			Λ	1. 10	10		1	
		19 (A) = d Jupa	lim I	u A = 0	tim Ved	r (Cr.	Cu	/	
		1							
		Impr							
8.3	Annexe : mat	rices équivalentes	A						
	_								
		1	as sau	llale,					
8.4	Annexe : un b	oloc comme matri	ce d'une	application	linéaire com	posée			
			/						