Bur ma: 103.1, 103.3

§PSI*

103

Réduction en dimension finie

Pour bien démarrer

- 1. Comment définir « valeur propre » ? « vecteur propre » ?
- 2. Que dire des sous-espaces propres associés à des valeurs propres deux à deux distinctes?
- 3. Que dire de la dimension d'un sous-espace propre?
- 4. Qu'est-ce qu'un polynôme annulateur d'un endomorphisme?
- 5. Quelle relation entre le spectre et les racines d'un polynôme annulateur?
- 6. Énoncer le théorème de la division euclidienne des polynômes.
- 7. Rappeler la formule de changement de base.

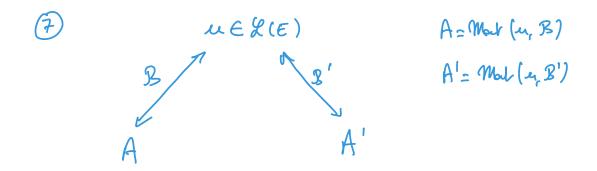
 λ up de $u \in S$ $\exists x \neq 0$ to $u(n) = \lambda n$ (=) Ver $(u - \lambda Id) \neq \{0 \in S\}$ u verdor propur de $u \in S$ (Verland Slobba par u) (=) $\exists \lambda \neq u(u) = \lambda n$ $(n \neq 0)$

(a)
$$P \in IK[X]$$
 to $P(u) = O_{\mathcal{L}(E)}$

$$A_{mu} + A_{m-1} u^{m-1} + \cdots + a_{1}u + o_{0} Id_{E}$$

$$\forall n \in P(u)(n) = a_{m}u^{m}(n) + \cdots + a_{n}u$$

$$O_{E}$$



Par chargemt de base, A = PA'P-1

 $x \in E$ $X \in M_{m}(IK)$ $X \in M_{m}(IK)$

Por change de bosse X=PX'

Dans ce chapitre, E désigne un \mathbb{K} -espace vectoriel de dimension finie n.

1 Diagonalisation

1.1 Endomorphismes diagonalisables, matrices carrées diagonalisables

<u>Définition</u>. Soit $u \in \mathcal{L}(E)$. On dit que u est diagonalisable si et seulement s'il existe une base \mathcal{B} de E telle que :

 $Mat_{\mathcal{B}}(u)$ est diagonale

Remarque. Une telle base est appelé base de diagonalisation de u. On dit aussi que u est diagonalisable dans la base \mathcal{B} .

En cas de diagonalisabilité, les termes diagonaux de la matrices sont les valeurs properes de u, et les vecteurs de \mathcal{B} sont des vecteurs propres associés.

Remarque. Diagonaliser un endomorphisme u, c'est déterminer une base de vecteurs propres et exprimer la matrice (diagonale) représentant u dans cette base.

<u>Définition.</u> Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée. On dit que A est diagonalisable si et seulement si l'endomorphisme canoniquement associé à A est diagonalisable.

<u>Proposition.</u> $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable si et seulement si elle est semblable à une matrice diagonale.

Remarque.

Diagonaliser une matrice A, c'est déterminer une matrice D diagonale et une matrice P inversible telles que $A = PDP^{-1}$.

Théorème.

Soit $u \in \mathcal{L}(E)$. Les propositions suivantes sont équivalentes :

- (i) u est diagonalisable
- (ii) Il existe une base de ${\cal E}$ formée de vecteurs propres de u
- (iii) E est la somme directe des sous-espaces propres de u :

$$E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} E_{\lambda}(u)$$

Exemple. Les projecteurs, les symétries sont diagonalisables.

Prene: $(i) \stackrel{(i)}{=} (ii)$ par la pay. quéadente $(ii) \stackrel{(i)}{=} (iii)$ On suppose qu'il exist B bone de E formie devedors propos de m. Hyre $E = \bigoplus_{\lambda \in Sp(n)} E_{\lambda}(u)$

* On said déjà que la soume est directe.

* (2) longoins vouie

* (2) Soit n E E

lar l'hypothèse, $\exists d_1, --, d_m$ to $n = d_1e_1 + -- + d_m e_m$ où les le soit vectors props le er.

On regroupe les délès qui soit don

le vièrre espace propre $\exists d_1(a)$

$$\chi = \left(\frac{E E_{\lambda_1}(\omega)}{A_{i_1} e_{i_1} + A_{i_2} e_{i_1} + \dots + A_{i_p} e_{i_p}} \right) \\
+ \left(\frac{A_{j_1} e_{j_1} + \dots + A_{j_q} e_{j_q}}{E A_{j_q} e_{j_q}} \right) \\
+ \dots \qquad E A_{j_q}(\omega)$$

$$E E_{\lambda_2}(\omega) + E_{\lambda_2}(\omega) + \dots - \dots$$

(ici) => (ici)

On suppose $E = E_{\lambda}(u)$ $\lambda \in S_{0}(u)$

Pour bage $\lambda \in Sp(a)$, on considére B_{λ} Un box de $E_{\lambda}(a)$, qu'est forncie de vections perper conociés à la up λ Hor por concaténation de boxe [concat B_{λ}] est une boxe de E_{λ}

On a tronvé un ban de E fourie de vectors paps de u.

Exemple. Soit p projection de EOn a $E = \text{Ver}(p-\text{Id}_E) \oplus \text{Ver}(p)$ Im(p) done $E = E_1(p) \oplus E_0(p)$

donc per diagnalisable.

1.2 Caractérisation par les sous-espaces propres

Théorème.

 $u \in \mathcal{L}(E)$ est diagonalisable si et seulement si

$$\sum_{\lambda \in \mathrm{Sp}(u)} \dim E_{\lambda}(u) = \dim E$$

 $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable si et seulement si

$$\sum_{\lambda \in \mathrm{Sp}(A)} \dim E_{\lambda}(A) = n$$

Preuse;

[] On supper an déagaralisable

donc $E = \bigoplus_{\lambda \in \mathcal{L}(\omega)} E_{\lambda}(\omega)$

el donc din E = E dim Ex (a)

E On suppose que don E = E din E/(a)

On sail que le Ep (v) sort en somme directe

et & Ex (a) C E lesp(a)

7

de dim Z din Ex(u) = din E Nesp(u)

d'où légalite: (E) E) (m) = E

donc u diagonalisable

Proposition. Si $u \in \mathcal{L}(E)$ (resp. $A \in \mathcal{M}_n(\mathbb{K})$) est diagonalisable, alors son polynôme caractéristique est scindé sur \mathbb{K} .

Remarque. Il s'agit bien d'une condition nécessaire de diagonalisabilité, et elle est toujours satisfaite lorsque $\mathbb{K} = \mathbb{C}$.

Jaindé? (Xv est de degré n dire qu'il est saindi, c'est din qu'il a u racois den lu (comptés avec unltiplicité de répetés aubail de fois que lev uneltiplicate) or even: $\sum u(\lambda) = u$ λ racine dique

Preme: $\forall \lambda \in Sp(\alpha)$

dim Ex (a) < m(x)

donc $\sum_{\lambda \in Sp(a)} dim \in \lambda(a) \leq \sum_{\lambda \in Sp(a)} m(\lambda)$

Love Xu et saindé.

Théorème.

 $u \in \mathcal{L}(E)$ (resp. $A \in \mathcal{M}_n(\mathbb{K})$ est digonalisable si et seulement si :

- son polynôme caractéristique est scindé
- la multiplicité de chaque valeur propre est égale à la dimension du sous-espace propre

Preuve: E Xn est sandi donc Z m(x) = deg xur
Lesplan

or $\forall \lambda$, $m(\lambda) = \dim E_{\lambda}(u)$ par hype done $\sum_{\lambda \in Sp(u)} \dim E_{\lambda}(u) = m$

don u diagonalisable

 $\sum_{\lambda \in Sp(a)} \left(m(\lambda) - \dim F_{\lambda}(a) \right)$

 $= \sum_{\lambda \in Sp(a)} m(\lambda) - \sum_{\lambda \in Sp(a)} din E_{\lambda}(a)$

= M - M

1

car Xu sandé u diagodiselle

= 0

Some udle de terms portifi donc the sp(u), m(d) = dem El(n)

On a déjà gistifice que pa et saindi.

CS

Corollaire. Dans E de dimension n, si $u \in \mathcal{L}(E)$ admet n valeurs propres deux à deux distinctes, alors u est diagonalisable et ses espaces propres sont des droites vectorielles.

Remarque. Résultat analogue pour les matrices de $\mathcal{M}_n(\mathbb{K})$.

Remarque. Ce corollaire donne bien une condition suffisante, mais non nécessaire, de diagonalisabilité. Dans ce cas, χ_u est scindé à racines simples.

Si Xu est saindi à racers simples

alers u diagonalisalle

Preuve: HESpan, 15 din Examples (m) 5 m(d)

donc dim Ex (a) = m (x) the Sp(a)

Exemple. Les matrices suivantes sont-elles diagonalisables?

$$A = \begin{pmatrix} -2 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ -3 & -1 & 3 \\ 3 & 3 & -1 \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{pmatrix} \qquad F = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

On rappelle qu'on a calculé les polynômes caractéristiques au chapitre précédent :

$$\chi_A(X) = X(X^2 - 3)$$
 $\chi_B(X) = (X - 3)(X - 1)^2$ $\chi_C(X) = (X - 2)^3$
 $\chi_D(X) = (X + 4)(X - 2)^2$ $\chi_E(X) = (X + 1)(X - 1)^2$ $\chi_F(X) = X^3 - 1$

•
$$\chi_A = \chi(\chi - \sqrt{3}) (\chi + \sqrt{3})$$
 soundé souple donc A disposibille
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)(\chi - 1)^2$ scendé
• $\chi_B = (\chi - 3)($

•
$$\chi_{c}(\chi-2)^{3}$$

$$\underbrace{f_{2}(C) = \text{Ver}(C-2\underline{\Gamma}_{3})}_{=\text{Ver}\begin{pmatrix}-1 & 1 & 1\\ 0 & 0 & 2\\ 1 & -1 & 1\end{pmatrix}}_{\text{unabries de rong } 2 \text{ Cor } (C_{1},C_{3}) \text{ like}}$$

donc C wish pos diagonalisalle Remarque: Quand il viga qu'une sule up, ici 2Si C est diagonalisalle, $E_2(C) = 1R^3$ dunc $Var(C-2I_3) = 1R^3$ ie $C = 2I_3$ or ce wint pur le con.

les fendomorphisses déasonalvalles qu'in visur qu'un vig Dut les planottréties 1 l'In

• $\gamma_0 = (x+4)(x-2)^2$ saindé —h yp single 2 up double $+ \text{ din } E_{-4}(D) = 1$ * $1 \le \text{ dim } E_2(D) \le 2$ et $E_2(D) = \text{Ver}(D-2T_3)$ = $\text{Ver}\begin{pmatrix} 0 & 0 & 0 \\ -3 & -3 & 3 \\ 3 & 3 & -3 \end{pmatrix}$

 $C_1 = C_2$ et $C_1 + C_3 = 0$ donc cette unatrice st de roug 1 donc don $E_2(D) = 2 = m(2)$

* Em conclusi: Det disgonalisable

* $X_E = (X+1)(X-1)^2$ sainchi

* $X_E = (X+1)(X-1)^2$ * $X_E = ($

• $M_F = X^3 - 1$ $F \in M_3(IR)$ $= (X - 1)(X^2 + X + 1)$ dan IR(X)which par sandi. der F wish par diagonalisable dan $M_3(IR)$

 $\chi_{F} = \chi^{3} - 1 \qquad \qquad F \in M_{3}(C)$ $= (\chi - 1)(\chi - j)(\chi - j^{2}) \quad don \quad C[\chi]$ et seinde simple $don F et diagonalyalle dan <math>M_{3}(C)$

1.3 Une condition suffisante de diagonalisabilité

Une conséquence du théorème spectral, qui sera étudié au chapitre 105, est le résultat suivant : **Théorème.**

Toute matrice symétrique réelle est diagonalisable.

